Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics
- URL: http://arxiv.org/abs/2405.12868v1
- Date: Tue, 21 May 2024 15:33:21 GMT
- Title: Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics
- Authors: Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, Wenbing Huang,
- Abstract summary: We develop an equivariant version of Fourier-temporal GNNs to represent and simulate dynamics of physical systems.
We evaluate our model on three real datasets corresponding to the molecular-, protein- and macro-level.
- Score: 32.115887916401036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to represent and simulate the dynamics of physical systems is a crucial yet challenging task. Existing equivariant Graph Neural Network (GNN) based methods have encapsulated the symmetry of physics, \emph{e.g.}, translations, rotations, etc, leading to better generalization ability. Nevertheless, their frame-to-frame formulation of the task overlooks the non-Markov property mainly incurred by unobserved dynamics in the environment. In this paper, we reformulate dynamics simulation as a spatio-temporal prediction task, by employing the trajectory in the past period to recover the Non-Markovian interactions. We propose Equivariant Spatio-Temporal Attentive Graph Networks (ESTAG), an equivariant version of spatio-temporal GNNs, to fulfill our purpose. At its core, we design a novel Equivariant Discrete Fourier Transform (EDFT) to extract periodic patterns from the history frames, and then construct an Equivariant Spatial Module (ESM) to accomplish spatial message passing, and an Equivariant Temporal Module (ETM) with the forward attention and equivariant pooling mechanisms to aggregate temporal message. We evaluate our model on three real datasets corresponding to the molecular-, protein- and macro-level. Experimental results verify the effectiveness of ESTAG compared to typical spatio-temporal GNNs and equivariant GNNs.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Spacetime $E(n)$-Transformer: Equivariant Attention for Spatio-temporal Graphs [0.0]
We show that the Spacetime $E(n)$-Transformer (SET) outperforms purely spatial and temporal models without symmetry properties.
We demonstrate that leveraging underlying domain symmetries yields considerable improvements for modeling systems on graphs.
arXiv Detail & Related papers (2024-08-12T10:13:45Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling.
We propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance.
We design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.
arXiv Detail & Related papers (2023-01-21T05:14:29Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.