Spacetime $E(n)$-Transformer: Equivariant Attention for Spatio-temporal Graphs
- URL: http://arxiv.org/abs/2408.06039v1
- Date: Mon, 12 Aug 2024 10:13:45 GMT
- Title: Spacetime $E(n)$-Transformer: Equivariant Attention for Spatio-temporal Graphs
- Authors: Sergio G. Charles,
- Abstract summary: We show that the Spacetime $E(n)$-Transformer (SET) outperforms purely spatial and temporal models without symmetry properties.
We demonstrate that leveraging underlying domain symmetries yields considerable improvements for modeling systems on graphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an $E(n)$-equivariant Transformer architecture for spatio-temporal graph data. By imposing rotation, translation, and permutation equivariance inductive biases in both space and time, we show that the Spacetime $E(n)$-Transformer (SET) outperforms purely spatial and temporal models without symmetry-preserving properties. We benchmark SET against said models on the charged $N$-body problem, a simple physical system with complex dynamics. While existing spatio-temporal graph neural networks focus on sequential modeling, we empirically demonstrate that leveraging underlying domain symmetries yields considerable improvements for modeling dynamical systems on graphs.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics [32.115887916401036]
We develop an equivariant version of Fourier-temporal GNNs to represent and simulate dynamics of physical systems.
We evaluate our model on three real datasets corresponding to the molecular-, protein- and macro-level.
arXiv Detail & Related papers (2024-05-21T15:33:21Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Mending of Spatio-Temporal Dependencies in Block Adjacency Matrix [3.529869282529924]
We propose a novel end-to-end learning architecture designed to mend the temporal dependencies, resulting in a well-connected graph.
Our methodology demonstrates superior performance on benchmark datasets, such as SurgVisDom and C2D2.
arXiv Detail & Related papers (2023-10-04T06:42:33Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling.
We propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance.
We design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.
arXiv Detail & Related papers (2023-01-21T05:14:29Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.