G-DIG: Towards Gradient-based Diverse and High-quality Instruction Data Selection for Machine Translation
- URL: http://arxiv.org/abs/2405.12915v2
- Date: Sun, 7 Jul 2024 08:16:28 GMT
- Title: G-DIG: Towards Gradient-based Diverse and High-quality Instruction Data Selection for Machine Translation
- Authors: Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Shanbo Cheng,
- Abstract summary: We propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation.
Our key innovation centers around analyzing how individual training examples influence the model during training.
- Score: 21.506844286376275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable abilities in general scenarios. Instruction finetuning empowers them to align with humans in various tasks. Nevertheless, the Diversity and Quality of the instruction data remain two main challenges for instruction finetuning. With regard to this, in this paper, we propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation. Our key innovation centers around analyzing how individual training examples influence the model during training. Specifically, we select training examples that exert beneficial influences on the model as high-quality ones by means of Influence Function plus a small high-quality seed dataset. Moreover, to enhance the diversity of the training data we maximize the variety of influences they have on the model by clustering on their gradients and resampling. Extensive experiments on WMT22 and FLORES translation tasks demonstrate the superiority of our methods, and in-depth analysis further validates their effectiveness and generalization.
Related papers
- CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare [12.218718086529462]
This study focuses on the Comprehensive Medical Benchmark in Chinese (CMB)
We successfully trained a smaller base model to achieve scores comparable to larger models.
By integrating a wide range of instructional content, our approach addresses potential issues such as data quality inconsistencies.
arXiv Detail & Related papers (2024-07-29T05:00:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - Data Diversity Matters for Robust Instruction Tuning [129.83575908023312]
Recent works have shown that by curating high quality and diverse instruction tuning datasets, we can significantly improve instruction-following capabilities.
We propose a new algorithm, Quality-Diversity Instruction Tuning (QDIT) to control dataset diversity and quality.
We validate the performance of QDIT on several large scale instruction tuning datasets, where we find it can substantially improve worst and average case performance.
arXiv Detail & Related papers (2023-11-21T19:12:18Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Multi-Stage Influence Function [97.19210942277354]
We develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data.
We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks.
arXiv Detail & Related papers (2020-07-17T16:03:11Z) - Reinforced Curriculum Learning on Pre-trained Neural Machine Translation
Models [20.976165305749777]
We learn a curriculum for improving a pre-trained NMT model by re-selecting influential data samples from the original training set.
We propose a data selection framework based on Deterministic Actor-Critic, in which a critic network predicts the expected change of model performance.
arXiv Detail & Related papers (2020-04-13T03:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.