Learning the Infinitesimal Generator of Stochastic Diffusion Processes
- URL: http://arxiv.org/abs/2405.12940v1
- Date: Tue, 21 May 2024 17:13:13 GMT
- Title: Learning the Infinitesimal Generator of Stochastic Diffusion Processes
- Authors: Vladimir R. Kostic, Karim Lounici, Helene Halconruy, Timothee Devergne, Massimiliano Pontil,
- Abstract summary: We address data-driven learning of the infinitesimal generator of diffusion estimator processes.
Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings.
- Score: 23.737384504740373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes. Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings. We evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning bounds independent of the state space dimension and ensures non-spurious spectral estimation. Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral learning bounds.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces [16.00267662259167]
This paper presents a novel approach for estimating the Koopman operator defined on a reproducing kernel Hilbert space (RKHS) and its spectra.
We propose an estimation method, what we call Jet Dynamic Mode Decomposition (JetDMD), leveraging the intrinsic structure of RKHS and the geometric notion known as jets.
This method refines the traditional Extended Dynamic Mode Decomposition (EDMD) in accuracy, especially in the numerical estimation of eigenvalues.
arXiv Detail & Related papers (2024-03-04T22:28:20Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
We develop a statistical mechanical approach to analyze sparse equation discovery algorithms.
In this framework, statistical mechanics offers tools to analyze the interplay between complexity and fitness.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - Weighted Riesz Particles [0.0]
We consider the target distribution as a mapping where the infinite-dimensional space of the parameters consists of a number of deterministic submanifolds.
We study the properties of the point, called Riesz, and embed it into sequential MCMC.
We find that there will be higher acceptance rates with fewer evaluations.
arXiv Detail & Related papers (2023-12-01T14:36:46Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNS is an algorithm for episodic reinforcement learning in non-stationary Markov Decision Processes.
We prove a regret bound that scales with the covering dimension of the state-action space and the total variation of the MDP with time.
arXiv Detail & Related papers (2020-07-09T21:37:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.