Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models
- URL: http://arxiv.org/abs/2405.12957v3
- Date: Tue, 01 Oct 2024 13:18:54 GMT
- Title: Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models
- Authors: Rudolf Herdt, Louisa Kinzel, Johann Georg Maaß, Marvin Walther, Henning Fröhlich, Tim Schubert, Peter Maass, Christian Patrick Schaaf,
- Abstract summary: Rodents employ a broad spectrum of ultrasonic vocalizations (USVs) for social communication.
Here, we present the first systematic evaluation of different types of neural networks for USV classification.
- Score: 0.8431877864777444
- License:
- Abstract: Rodents employ a broad spectrum of ultrasonic vocalizations (USVs) for social communication. As these vocalizations offer valuable insights into affective states, social interactions, and developmental stages of animals, various deep learning approaches have aimed to automate both the quantitative (detection) and qualitative (classification) analysis of USVs. Here, we present the first systematic evaluation of different types of neural networks for USV classification. We assessed various feedforward networks, including a custom-built, fully-connected network and convolutional neural network, different residual neural networks (ResNets), an EfficientNet, and a Vision Transformer (ViT). Paired with a refined, entropy-based detection algorithm (achieving recall of 94.9% and precision of 99.3%), the best architecture (achieving 86.79% accuracy) was integrated into a fully automated pipeline capable of analyzing extensive USV datasets with high reliability. Additionally, users can specify an individual minimum accuracy threshold based on their research needs. In this semi-automated setup, the pipeline selectively classifies calls with high pseudo-probability, leaving the rest for manual inspection. Our study focuses exclusively on neonatal USVs. As part of an ongoing phenotyping study, our pipeline has proven to be a valuable tool for identifying key differences in USVs produced by mice with autism-like behaviors.
Related papers
- Enhancing Apparent Personality Trait Analysis with Cross-Modal Embeddings [0.5461938536945723]
We present a multimodal deep neural network with a Siamese extension for apparent personality trait prediction trained on short video recordings.
Due to the highly centralized target distribution of the analyzed dataset, the changes in the third digit are relevant.
arXiv Detail & Related papers (2024-05-06T20:51:28Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Generalizing Medical Image Representations via Quaternion Wavelet Networks [9.836302410524842]
We introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images.
The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task.
arXiv Detail & Related papers (2023-10-16T09:34:06Z) - Random vector functional link network: recent developments,
applications, and future directions [5.2848042940993345]
Randomization based neural networks such as random vector functional link (RVFL) network have been proposed.
RVFL model has several characteristics such as fast training speed, direct links, simple architecture, and universal approximation capability.
This article presents the first comprehensive review of the evolution of RVFL model.
arXiv Detail & Related papers (2022-02-13T05:02:52Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - A Multi-view CNN-based Acoustic Classification System for Automatic
Animal Species Identification [42.119250432849505]
We propose a deep learning based acoustic classification framework for Wireless Acoustic Sensor Network (WASN)
The proposed framework is based on cloud architecture which relaxes the computational burden on the wireless sensor node.
To improve the recognition accuracy, we design a multi-view Convolution Neural Network (CNN) to extract the short-, middle-, and long-term dependencies in parallel.
arXiv Detail & Related papers (2020-02-23T03:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.