Personalized Residuals for Concept-Driven Text-to-Image Generation
- URL: http://arxiv.org/abs/2405.12978v1
- Date: Tue, 21 May 2024 17:59:01 GMT
- Title: Personalized Residuals for Concept-Driven Text-to-Image Generation
- Authors: Cusuh Ham, Matthew Fisher, James Hays, Nicholas Kolkin, Yuchen Liu, Richard Zhang, Tobias Hinz,
- Abstract summary: We present personalized residuals and localized attention-guided sampling for efficient concept-driven generation using text-to-image diffusion models.
We show that personalized residuals effectively capture the identity of a concept in 3 minutes on a single GPU without the use of regularization images.
- Score: 29.052642845759372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present personalized residuals and localized attention-guided sampling for efficient concept-driven generation using text-to-image diffusion models. Our method first represents concepts by freezing the weights of a pretrained text-conditioned diffusion model and learning low-rank residuals for a small subset of the model's layers. The residual-based approach then directly enables application of our proposed sampling technique, which applies the learned residuals only in areas where the concept is localized via cross-attention and applies the original diffusion weights in all other regions. Localized sampling therefore combines the learned identity of the concept with the existing generative prior of the underlying diffusion model. We show that personalized residuals effectively capture the identity of a concept in ~3 minutes on a single GPU without the use of regularization images and with fewer parameters than previous models, and localized sampling allows using the original model as strong prior for large parts of the image.
Related papers
- Concept Replacer: Replacing Sensitive Concepts in Diffusion Models via Precision Localization [48.20360860166279]
Large-scale diffusion models produce high-quality images but often generate unwanted content, such as sexually explicit or violent content.
We propose a novel approach for targeted concept replacing in diffusion models, enabling specific concepts to be removed without affecting non-target areas.
Our method introduces a dedicated concept localizer for precisely identifying the target concept during the denoising process, trained with few-shot learning to require minimal labeled data.
Within the identified region, we introduce a training-free Dual Prompts Cross-Attention (DPCA) module to substitute the target concept, ensuring minimal disruption to surrounding content.
arXiv Detail & Related papers (2024-12-02T08:05:39Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - Membership Inference on Text-to-Image Diffusion Models via Conditional Likelihood Discrepancy [36.156856772794065]
We propose a conditional overfitting phenomenon in text-to-image diffusion models.
Our method significantly outperforms previous methods across various data and dataset scales.
arXiv Detail & Related papers (2024-05-23T17:09:51Z) - Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent.
Our approach allows us to perform less than 10% of the full diffusion generative process and requires no architectural changes to the diffusion model.
arXiv Detail & Related papers (2024-04-12T16:23:42Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Discovery and Expansion of New Domains within Diffusion Models [41.25905891327446]
We study the generalization properties of diffusion models in a fewshot setup.
We introduce a novel tuning-free paradigm to synthesize the target out-of-domain data.
arXiv Detail & Related papers (2023-10-13T16:07:31Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.