論文の概要: METAREFLECTION: Learning Instructions for Language Agents using Past Reflections
- arxiv url: http://arxiv.org/abs/2405.13009v1
- Date: Mon, 13 May 2024 10:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 02:58:21.289439
- Title: METAREFLECTION: Learning Instructions for Language Agents using Past Reflections
- Title(参考訳): メタレフレクション:過去の反射を用いた言語エージェントの学習指導
- Authors: Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna, Sherry Shi, Gustavo Soares,
- Abstract要約: 本稿では,訓練期間中に収集した個々の自己反射から,特定のドメインに対する一般的なプロンプト命令を学習する技術であるMETAREFLECTIONを紹介する。
本稿では,インフラストラクチャ・アズ・コード (IAC) の脆弱性検出とREACTとCOTを用いた質問応答 (QA) の2つの領域で評価する。
- 参考スコア(独自算出の注目度): 11.028256182234017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the popularity of Large Language Models (LLMs), crafting specific prompts for LLMs to perform particular tasks remains challenging. Users often engage in multiple conversational turns with an LLM-based agent to accomplish their intended task. Recent studies have demonstrated that linguistic feedback, in the form of self-reflections generated by the model, can work as reinforcement during these conversations, thus enabling quicker convergence to the desired outcome. Motivated by these findings, we introduce METAREFLECTION, a novel technique that learns general prompt instructions for a specific domain from individual self-reflections gathered during a training phase. We evaluate our technique in two domains: Infrastructure as Code (IAC) vulnerability detection and question-answering (QA) using REACT and COT. Our results demonstrate a notable improvement, with METARELECTION outperforming GPT-4 by 16.82% (IAC), 31.33% (COT), and 15.42% (REACT), underscoring the potential of METAREFLECTION as a viable method for enhancing the efficiency of LLMs.
- Abstract(参考訳): LLM(Large Language Models)の人気にもかかわらず、LLMが特定のタスクを実行するための特別なプロンプトを作成することは、依然として難しい。
ユーザは、意図したタスクを達成するために、LLMベースのエージェントと複数の会話を交互に行うことが多い。
近年の研究では、言語フィードバックは、モデルによって生成された自己回帰の形で、これらの会話の間に強化として機能し、より迅速に望ましい結果に収束することができることが示されている。
これらの知見に触発されて,訓練期間中に収集した個別の自己回帰から,特定のドメインに対する一般的なプロンプト命令を学習する新しいテクニックであるMETAREFLECTIONを紹介した。
本稿では,インフラストラクチャ・アズ・コード (IAC) の脆弱性検出とREACTとCOTを用いた質問応答 (QA) の2つの領域で評価する。
その結果,METARELECTION は GPT-4 を16.82%(IAC),31.33%(COT),15.42%(REACT)で上回った。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - Bridging the Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs [15.911445732909849]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
しかしながら、その傾向と有効性は、非ラテン文字や低リソース言語に限られている。
本稿では,LLMの多言語的性能向上を,広範囲の訓練や微調整を伴わずに行うことの必須課題に対処する。
論文 参考訳(メタデータ) (2024-05-28T16:56:42Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
我々は,LLMに基づくPrompt Optimizationの実際のメカニズムを明らかにするために研究を行っている。
以上の結果から, LLMは, 反射中の誤差の真の原因を特定するのに苦慮し, 自己の事前知識に偏っていることが明らかとなった。
我々は、より制御可能な方法でターゲットモデルの振舞いを直接最適化する新しい「自動振舞い最適化」パラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-03T09:48:54Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - CLIN: A Continually Learning Language Agent for Rapid Task Adaptation
and Generalization [62.0397906276669]
CLINは、複数のトライアルを継続的に改善した最初の言語ベースのエージェントである。
ゼロショットのパフォーマンスを4ポイント改善し(新しいタスクでは13)、連続的なメモリ更新によってパフォーマンスをさらに向上させることができる。
これは、凍結モデル上に構築されたエージェントのための新しいアーキテクチャを示唆している。
論文 参考訳(メタデータ) (2023-10-16T07:17:27Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
我々はLanguage Agent Tree Search (LATS)を紹介した。Language Agent Tree Search (LATS)は、推論、行動、計画において言語モデル(LM)の能力を相乗化する最初の一般的なフレームワークである。
当社のアプローチの重要な特徴は、より意図的で適応的な問題解決メカニズムを提供する外部フィードバック環境の導入である。
LATSは、GPT-4でHumanEval上でプログラミングするための最先端パス@1精度(92.7%)を達成し、GPTによるWebShop上のWebナビゲーションの勾配ベースの微調整に匹敵する勾配なし性能(平均スコア75.9)を示す。
論文 参考訳(メタデータ) (2023-10-06T17:55:11Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
本稿では,レトロスペクティブモデルを学習することで,大規模言語エージェントを強化するための原則的枠組みを提案する。
提案するエージェントアーキテクチャは,事前学習した言語モデルを微調整するために,複数の環境やタスクにまたがる報酬から学習する。
様々なタスクの実験結果から、言語エージェントは時間とともに改善することが示された。
論文 参考訳(メタデータ) (2023-08-04T06:14:23Z) - Reflexion: Language Agents with Verbal Reinforcement Learning [44.85337947858337]
リフレクション(Reflexion)は、ウェイトを更新するのではなく、言語フィードバックによって言語エージェントを強化する新しいフレームワークである。
様々なタイプ(スカラー値または自由形式言語)とフィードバック信号のソース(外部または内部シミュレート)を組み込むのに十分な柔軟性がある。
例えば、ReflexionはHumanEvalのコーディングベンチマークで91%のパス@1精度を達成した。
論文 参考訳(メタデータ) (2023-03-20T18:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。