論文の概要: Bridging the Language Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs
- arxiv url: http://arxiv.org/abs/2305.17740v2
- Date: Tue, 07 Jan 2025 04:03:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:30.382695
- Title: Bridging the Language Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs
- Title(参考訳): 言語ギャップのブリッジ: LLMにおける多言語性能向上のための動的学習戦略
- Authors: Somnath Kumar, Vaibhav Balloli, Mercy Ranjit, Kabir Ahuja, Sunayana Sitaram, Kalika Bali, Tanuja Ganu, Akshay Nambi,
- Abstract要約: 大規模言語モデル(LLM)は様々なドメインに革命をもたらしたが、それでも非ラテン語スクリプトや低リソース言語に苦戦している。
本稿では,実行時にクエリ毎のプロンプト戦略,埋め込みモデル,LLMを最適化する,新しい動的学習手法を提案する。
提案手法では,事前学習モデルに比べて10~15%の言語性能向上と4倍のゲインを達成できた。
- 参考スコア(独自算出の注目度): 15.911445732909849
- License:
- Abstract: Large language models (LLMs) have revolutionized various domains but still struggle with non-Latin scripts and low-resource languages. This paper addresses the critical challenge of improving multilingual performance without extensive fine-tuning. We introduce a novel dynamic learning approach that optimizes prompt strategy, embedding model, and LLM per query at runtime. By adapting configurations dynamically, our method achieves significant improvements over static, best and random baselines. It operates efficiently in both offline and online settings, generalizing seamlessly across new languages and datasets. Leveraging Retrieval-Augmented Generation (RAG) with state-of-the-art multilingual embeddings, we achieve superior task performance across diverse linguistic contexts. Through systematic investigation and evaluation across 18 diverse languages using popular question-answering (QA) datasets we show our approach results in 10-15% improvements in multilingual performance over pre-trained models and 4x gains compared to fine-tuned, language-specific models.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なドメインに革命をもたらしたが、それでも非ラテン語スクリプトや低リソース言語に苦戦している。
本稿では,広範囲な微調整を伴わずに多言語性能を向上させるという重要な課題に対処する。
本稿では,実行時にクエリ毎のプロンプト戦略,埋め込みモデル,LLMを最適化する,新しい動的学習手法を提案する。
動的に構成を適応することにより,静的,最良の,ランダムなベースラインよりも大幅に改善される。
オフラインとオンラインの両方で効率的に動作し、新しい言語とデータセットをシームレスに一般化する。
検索言語拡張生成(RAG)を最先端の多言語埋め込みで活用することにより,多様な言語文脈において優れたタスク性能を実現する。
一般的な質問応答(QA)データセットを用いて18言語にわたる体系的な調査と評価を行うことで,事前学習モデルよりも10~15%の多言語性能向上と,微調整された言語固有のモデルと比較して4倍のゲインが得られた。
関連論文リスト
- Enhancing Multilingual LLM Pretraining with Model-Based Data Selection [33.68104398807581]
本稿では,多言語データセットを対象としたモデルベースフィルタリングフレームワークを提案する。
当社のアプローチは透明性、単純さ、効率性を重視しています。
フレームワークを20言語に拡張し、洗練された事前トレーニングデータセットをリリースします。
論文 参考訳(メタデータ) (2025-02-14T18:42:07Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
LUSIFERは,LLMをベースとした多言語タスクの埋め込みモデルに,多言語監視を必要とせずに適用可能なゼロショット方式である。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-01T15:43:07Z) - Bridging the Language Gaps in Large Language Models with Inference-Time Cross-Lingual Intervention [71.12193680015622]
大規模言語モデル(LLM)は自然言語処理において顕著な能力を示している。
LLMは異なる言語間で大きな性能差を示す。
Inference-Time Cross-Lingual Intervention (INCLINE) を提案する。
論文 参考訳(メタデータ) (2024-10-16T11:23:03Z) - Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages [0.0]
この研究は、非英語のプロンプトがレコメンデーションパフォーマンスに与える影響を探求する。
ML1M、LastFM、Amazon-Beautyの3つの実世界のデータセットの評価は、非英語プロンプトの使用が一般的にパフォーマンスを低下させることを示した。
多言語プロンプトによるリトレーニングにより、言語間のバランスの取れたパフォーマンスが向上したが、英語のパフォーマンスはわずかに低下した。
論文 参考訳(メタデータ) (2024-09-11T20:31:42Z) - Bridging the Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs [15.911445732909849]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
しかしながら、その傾向と有効性は、非ラテン文字や低リソース言語に限られている。
本稿では,LLMの多言語的性能向上を,広範囲の訓練や微調整を伴わずに行うことの必須課題に対処する。
論文 参考訳(メタデータ) (2024-05-28T16:56:42Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Not All Languages Are Created Equal in LLMs: Improving Multilingual
Capability by Cross-Lingual-Thought Prompting [123.16452714740106]
大規模言語モデル(LLM)は印象的な多言語機能を示すが、その性能は言語によって大きく異なる。
XLT (cross-lingual- Thought prompting) という,シンプルで効果的な方法を提案する。
XLTは汎用テンプレートプロンプトで、言語間および論理的推論スキルを刺激し、言語間のタスクパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2023-05-11T17:44:17Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。