論文の概要: Amplifying Aspect-Sentence Awareness: A Novel Approach for Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2405.13013v2
- Date: Sat, 26 Oct 2024 21:09:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:35.568482
- Title: Amplifying Aspect-Sentence Awareness: A Novel Approach for Aspect-Based Sentiment Analysis
- Title(参考訳): アスペクト・センス・アウェアネスの増幅:アスペクト・ベース・センシティメント・アナリティクスのための新しいアプローチ
- Authors: Adamu Lawan, Juhua Pu, Haruna Yunusa, Jawad Muhammad, Aliyu Umar,
- Abstract要約: Aspect-Based Sentiment Analysis (ABSA)は自然言語処理(NLP)においてますます重要になっている
ABSAは、テキストで言及されている特定の側面に関する感情を抽出することによって、従来の感情分析を越えている。
A3SN(Amplifying Aspect-Sentence Awareness)は,アスペクト・センス・アウェアネスを増幅することでABSAを強化する技術である。
- 参考スコア(独自算出の注目度): 2.9045498954705886
- License:
- Abstract: Aspect-Based Sentiment Analysis (ABSA) is increasingly crucial in Natural Language Processing (NLP) for applications such as customer feedback analysis and product recommendation systems. ABSA goes beyond traditional sentiment analysis by extracting sentiments related to specific aspects mentioned in the text; existing attention-based models often need help to effectively connect aspects with context due to language complexity and multiple sentiment polarities in a single sentence. Recent research underscores the value of integrating syntactic information, such as dependency trees, to understand long-range syntactic relationships better and link aspects with context. Despite these advantages, challenges persist, including sensitivity to parsing errors and increased computational complexity when combining syntactic and semantic information. To address these issues, we propose Amplifying Aspect-Sentence Awareness (A3SN), a novel technique designed to enhance ABSA through amplifying aspect-sentence awareness attention. Following the transformer's standard process, our innovative approach incorporates multi-head attention mechanisms to augment the model with sentence and aspect semantic information. We added another multi-head attention module: amplify aspect-sentence awareness attention. By doubling its focus between the sentence and aspect, we effectively highlighted aspect importance within the sentence context. This enables accurate capture of subtle relationships and dependencies. Additionally, gated fusion integrates feature representations from multi-head and amplified aspect-sentence awareness attention mechanisms, which is essential for ABSA. Experimental results across three benchmark datasets demonstrate A3SN's effectiveness and outperform state-of-the-art (SOTA) baseline models.
- Abstract(参考訳): Aspect-Based Sentiment Analysis (ABSA)は、顧客フィードバック分析や製品レコメンデーションシステムといったアプリケーションにおいて、自然言語処理(NLP)においてますます重要になっている。
ABSAは、テキストで言及されている特定の側面に関する感情を抽出することで、従来の感情分析を超越している。
最近の研究は、依存関係木のような構文情報を統合することで、長距離構文関係をよりよく理解し、文脈とアスペクトを結びつけることの価値を浮き彫りにしている。
これらの利点にもかかわらず、構文情報と意味情報を組み合わせた場合、エラー解析への感受性や計算複雑性の増加といった課題が続いている。
これらの課題に対処するために,アスペクト・センス・アウェアネス(A3SN)を増幅し,アスペクト・センス・アウェアネスを増幅する新しい手法を提案する。
トランスフォーマーの標準的なプロセスに従って、我々の革新的なアプローチはマルチヘッドアテンション機構を導入し、文とアスペクトセマンティック情報でモデルを増強する。
また、アスペクト・センスの注意を増幅するマルチヘッドアテンションモジュールも追加しました。
文とアスペクトの焦点を2倍にすることで、文コンテキストにおけるアスペクトの重要性を効果的に強調した。
これにより、微妙な関係や依存関係を正確にキャプチャできる。
さらに、ゲート融合は、ABSAに不可欠なマルチヘッドおよび増幅アスペクト・センス・アテンション・アテンション・アテンション・メカニズムから特徴表現を統合する。
3つのベンチマークデータセットに対する実験結果は、A3SNの有効性と、SOTA(State-of-the-art)ベースラインモデルよりも優れていることを示している。
関連論文リスト
- PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
総合ABSAのためのシンタクティック・依存性強化マルチタスクインタラクション・アーキテクチャ(SDEMTIA)を提案する。
我々のアプローチは、SDEIN(Syntactic Dependency Embedded Interactive Network)を用いた構文知識(依存関係と型)を革新的に活用する。
また,学習効率を高めるために,マルチタスク学習フレームワークに,新規で効率的なメッセージパッシング機構を組み込んだ。
論文 参考訳(メタデータ) (2023-11-28T16:03:22Z) - Aspect-oriented Opinion Alignment Network for Aspect-Based Sentiment
Classification [14.212306015270208]
本稿では、意見語とそれに対応する側面の文脈的関連を捉えるために、アスペクト指向オピニオンアライメントネットワーク(AOAN)を提案する。
さらに,対象の側面に関連性のある意見情報を一致させる多視点的注意機構を設計する。
提案モデルでは,3つのベンチマークデータセットに対して最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-08-22T13:55:36Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - A semantically enhanced dual encoder for aspect sentiment triplet
extraction [0.7291396653006809]
アスペクト・センチメント・トリプルト抽出(ASTE)はアスペクト・ベースの感情分析(ABSA)の重要なサブタスクである
従来の研究は、革新的なテーブル充填戦略によるASTEの強化に重点を置いてきた。
本稿では,BERTをベースとした基本エンコーダと,Bi-LSTMネットワークとGCN(Graph Convolutional Network)で構成される特定のエンコーダの両方を利用するフレームワークを提案する。
ベンチマークデータセットを用いた実験により,提案フレームワークの最先端性能を実証した。
論文 参考訳(メタデータ) (2023-06-14T09:04:14Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSAは、与えられた側面に関してレビューで表現された感情を予測することを目的としている。
与えられたアスペクトは、コンテキストモデリングプロセスにおけるコンテキストからの新たなヒントと見なされるべきである。
異なるバックボーンに基づいて複数のアスペクト認識コンテキストエンコーダを設計する。
論文 参考訳(メタデータ) (2021-06-21T02:26:03Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
本研究では,深い文脈情報を持つサブタスク間での対話的関係を実現するディープ・コンテクスチュアライズド・リレーア・アウェア・ネットワーク(DCRAN)を提案する。
DCRANは3つの広く使用されているベンチマークにおいて、従来の最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-07T17:16:15Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。