論文の概要: Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2504.11331v1
- Date: Tue, 15 Apr 2025 16:05:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:10.969538
- Title: Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis
- Title(参考訳): マルチモーダルアスペクトに基づく感性分析のための依存構造強化コンテキストスコピングフレームワーク
- Authors: Hao Liu, Lijun He, Jiaxi Liang, Zhihan Ren, Fan Li,
- Abstract要約: マルチモーダルアスペクトベース感性分析(MABSA)は,画像とテキストのペアから微細な情報を抽出する。
DASCOは、依存性解析ツリーを活用することでアスペクトレベルの感情推論を強化する、きめ細かいスコープ指向のフレームワークである。
2つのベンチマークデータセットの実験は、DASCOがMABSAで最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 9.561100210295699
- License:
- Abstract: Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
- Abstract(参考訳): マルチモーダル・アスペクトベース感性分析(MABSA)は、画像とテキストのペアからきめ細かい情報を抽出し、アスペクト項を特定し、その感情の極性を決定する。
しかし、既存のアプローチは、センティメントキュー知覚(SCP)、マルチモーダル情報ミスアライメント(MIM)、セマンティックノイズ除去(SNE)の3つの主要な課題に同時に対処する上で不足することが多い。
このような制約を克服するため,DASCO(\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework)を提案する。
まず, アスペクト指向の強化, 画像テキストマッチング, アスペクトレベル感性認知を組み合わせたMABSAのためのマルチタスク事前学習戦略を設計した。
これにより、アスペクト項と感情的手がかりに対するモデルの認識が向上し、画像テキストの効果的なアライメントを実現し、SCPやMIMといった重要な課題に対処した。
さらに,係り受け木をセマンティックブランチと組み合わせた構文分岐として組み込むことにより,SNE問題に対処する無関係ノイズを効果的に除去し,対象範囲内の重要な文脈要素に選択的に参画するモデルを導出する。
3つのサブタスクにわたる2つのベンチマークデータセットに関する大規模な実験は、DASCOがMABSAで最先端のパフォーマンスを達成したことを示している。
関連論文リスト
- Revisiting Structured Sentiment Analysis as Latent Dependency Graph Parsing [38.27437431585664]
スパンの内部構造は無視されるため、スパンの境界トークンのみが関係予測やスパン認識に使用される。
長いスパンはSSAデータセットのかなりの割合を占めており、内部構造が無視されるという問題をさらに悪化させる。
本稿では,2段階解析手法を提案し,木CRFをアルゴリズム内部に制約を課し,遅延構造を明示的にモデル化する。
論文 参考訳(メタデータ) (2024-07-05T18:18:50Z) - RNG: Reducing Multi-level Noise and Multi-grained Semantic Gap for Joint Multimodal Aspect-Sentiment Analysis [27.545702415272125]
JMASA(Joint Multimodal Aspect-Sentiment Analysis)のための新しいフレームワークRNGを提案する。
具体的には、マルチレベルなモーダリティノイズとマルチレベルなセマンティックギャップを減らすために、3つの制約を設計する。
2つのデータセットの実験は、新しい最先端のパフォーマンスを検証する。
論文 参考訳(メタデータ) (2024-05-20T12:18:46Z) - Amplifying Aspect-Sentence Awareness: A Novel Approach for Aspect-Based Sentiment Analysis [2.9045498954705886]
Aspect-Based Sentiment Analysis (ABSA)は自然言語処理(NLP)においてますます重要になっている
ABSAは、テキストで言及されている特定の側面に関する感情を抽出することによって、従来の感情分析を越えている。
A3SN(Amplifying Aspect-Sentence Awareness)は,アスペクト・センス・アウェアネスを増幅することでABSAを強化する技術である。
論文 参考訳(メタデータ) (2024-05-14T10:29:59Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Netは、FS-FGアクション認識のためのマッチングベースのフレームワークである。
textitmulti-view エンコーディング、textitmulti-view matching、textitmulti-view fusion を組み込んで、埋め込みエンコーディング、類似性マッチング、意思決定を容易にする。
説明可能な可視化と実験結果により,M$3$Netの微細な動作の詳細を捉える上での優位性が示された。
論文 参考訳(メタデータ) (2023-08-06T09:15:14Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - A semantically enhanced dual encoder for aspect sentiment triplet
extraction [0.7291396653006809]
アスペクト・センチメント・トリプルト抽出(ASTE)はアスペクト・ベースの感情分析(ABSA)の重要なサブタスクである
従来の研究は、革新的なテーブル充填戦略によるASTEの強化に重点を置いてきた。
本稿では,BERTをベースとした基本エンコーダと,Bi-LSTMネットワークとGCN(Graph Convolutional Network)で構成される特定のエンコーダの両方を利用するフレームワークを提案する。
ベンチマークデータセットを用いた実験により,提案フレームワークの最先端性能を実証した。
論文 参考訳(メタデータ) (2023-06-14T09:04:14Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - Learning Relation Alignment for Calibrated Cross-modal Retrieval [52.760541762871505]
言語的・視覚的関係のセマンティックな距離を計測し,関係の一貫性を定量化するための新しい指標ISD(Intra-modal Self-attention Distance)を提案する。
ISDを最適化し、モダル間アライメントを介してモダル内アライメントを相互に調整するための正規化訓練法である、モダル内アライメント(IAIS)について述べる。
論文 参考訳(メタデータ) (2021-05-28T14:25:49Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。