論文の概要: Human-Centered LLM-Agent User Interface: A Position Paper
- arxiv url: http://arxiv.org/abs/2405.13050v1
- Date: Sun, 19 May 2024 13:02:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 04:32:08.934797
- Title: Human-Centered LLM-Agent User Interface: A Position Paper
- Title(参考訳): 人中心LLM-Agentユーザインタフェース:ポジションペーパー
- Authors: Daniel Chin, Yuxuan Wang, Gus Xia,
- Abstract要約: 大規模言語モデル (LLM) - ループ内でのアプリケーションは、人間のコマンドを効果的に解釈できることが示されている。
基盤となるツールやシステムにほとんど無知なユーザは、LAUIを使って創発的なワークフローを見つけることができるべきです。
- 参考スコア(独自算出の注目度): 8.675534401018407
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Model (LLM) -in-the-loop applications have been shown to effectively interpret the human user's commands, make plans, and operate external tools/systems accordingly. Still, the operation scope of the LLM agent is limited to passively following the user, requiring the user to frame his/her needs with regard to the underlying tools/systems. We note that the potential of an LLM-Agent User Interface (LAUI) is much greater. A user mostly ignorant to the underlying tools/systems should be able to work with a LAUI to discover an emergent workflow. Contrary to the conventional way of designing an explorable GUI to teach the user a predefined set of ways to use the system, in the ideal LAUI, the LLM agent is initialized to be proficient with the system, proactively studies the user and his/her needs, and proposes new interaction schemes to the user. To illustrate LAUI, we present Flute X GPT, a concrete example using an LLM agent, a prompt manager, and a flute-tutoring multi-modal software-hardware system to facilitate the complex, real-time user experience of learning to play the flute.
- Abstract(参考訳): Large Language Model (LLM) - in-the-loopアプリケーションは、ユーザのコマンドを効果的に解釈し、計画を立て、それに従って外部ツールやシステムを操作する。
それでも、LLMエージェントの操作範囲は、ユーザを受動的に追従することに限定されており、基盤となるツールやシステムに関して、ユーザは自身のニーズをフレーム化しなければならない。
LLM-Agent User Interface (LAUI) の可能性がはるかに大きいことに留意する。
基盤となるツールやシステムにほとんど無知なユーザは、LAUIを使って創発的なワークフローを見つけることができるべきです。
探索可能なGUIを設計してシステムの使用方法を教える従来の方法とは対照的に、理想的なLAUIでは、LLMエージェントがシステムに精通するように初期化され、ユーザとそのニーズを積極的に研究し、ユーザに対して新たなインタラクションスキームを提案する。
LAUIを説明するために,LLMエージェント,プロンプトマネージャ,フルートをチューニングしたマルチモーダル・ソフトウェア・ハードウエア・システムを用いて,フルートの複雑なリアルタイムユーザ体験を楽しむための具体例であるFlute X GPTを提案する。
関連論文リスト
- Simulating Classroom Education with LLM-Empowered Agents [52.62324491261461]
SimClassは、ユーザ参加を含むマルチエージェントの教室シミュレーションフレームワークである。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入する。
我々は,LLMが従来の教室のインタラクションパターンを効果的にシミュレートし,ユーザエクスペリエンスを向上させることを実証した。
論文 参考訳(メタデータ) (2024-06-27T14:51:07Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - BISCUIT: Scaffolding LLM-Generated Code with Ephemeral UIs in Computational Notebooks [14.640473990776691]
計算ノートブックに新たなワークフローを導入し,LLMベースのコード生成を短時間のUIステップで拡張する。
本稿では,このワークフローを JupyterLab の拡張である BISCUIT に提示する。
BISCUITはユーザの理解を助けるためのコード表現を提供し、迅速なエンジニアリングの複雑さを減らし、ユーザが異なる変数を探索するための遊び場を作成する。
論文 参考訳(メタデータ) (2024-04-10T23:28:09Z) - User-LLM: Efficient LLM Contextualization with User Embeddings [24.099604517203606]
大規模言語モデル(LLM)のコンテキスト化にユーザ埋め込みを活用する新しいフレームワークであるUser-LLMを提案する。
MovieLens、Amazon Review、Google Local Reviewのデータセットに関する我々の実験は、様々なタスクで大きなパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-21T08:03:27Z) - LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations [26.340786701393768]
対話の形で説明を提供する解釈可能性ツールは,ユーザの理解を高める上で有効であることを示す。
しかしながら、対話ベースの説明のための現在のソリューションは、しばしば外部ツールやモジュールを必要とし、設計されていないタスクに簡単に転送できない。
ユーザがその振る舞いについて,最先端の大規模言語モデル(LLM)とチャットできる,アクセスしやすいツールを提案する。
論文 参考訳(メタデータ) (2024-01-23T09:11:07Z) - MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning [38.610185966889226]
本稿では,オープンソースの大規模言語モデルとマルチモーダルエンコーダを組み合わせたMLLM-Toolを提案する。
学習したLLMはマルチモーダルな入力命令を意識し、関数マッチングツールを正しく選択することができる。
実験の結果,MLLM-Toolはマルチモーダル命令に適したツールを推奨できることがわかった。
論文 参考訳(メタデータ) (2024-01-19T14:44:37Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。