論文の概要: Learning to Ask: When LLMs Meet Unclear Instruction
- arxiv url: http://arxiv.org/abs/2409.00557v2
- Date: Wed, 4 Sep 2024 20:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:55:44.370271
- Title: Learning to Ask: When LLMs Meet Unclear Instruction
- Title(参考訳): 質問への学び:LLMが不明瞭な指示に出会ったとき
- Authors: Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen-tse Huang, Michael R. Lyu,
- Abstract要約: 大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 49.256630152684764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equipped with the capability to call functions, modern large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone. However, the effective execution of these tools relies heavily not just on the advanced capabilities of LLMs but also on precise user instructions, which often cannot be ensured in the real world. To evaluate the performance of LLMs tool-use under imperfect instructions, we meticulously examine the real-world instructions queried from users, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench (NoisyToolBench). We find that due to the next-token prediction training objective, LLMs tend to arbitrarily generate the missed argument, which may lead to hallucinations and risks. To address this issue, we propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions. Moreover, to reduce the manual labor involved in user-LLM interaction and assess LLMs performance in tool utilization from both accuracy and efficiency perspectives, we design an automated evaluation tool named ToolEvaluator. Our experiments demonstrate that the AwN significantly outperforms existing frameworks for tool learning in the NoisyToolBench. We will release all related code and datasets to support future research.
- Abstract(参考訳): 関数を呼び出す機能を備えているため、現代の大規模言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
しかし、これらのツールの効果的な実行は、LLMの高度な機能だけでなく、正確なユーザー指示にも大きく依存する。
不完全な命令下でのLLMのツール使用性能を評価するため,ユーザからの問い合わせを精査し,エラーパターンを分析し,Noisy ToolBench(NoisyToolBench)と呼ばれる挑戦的なツール使用ベンチマークを構築した。
次回の予測訓練の目的のため、LCMは、失った議論を任意に生成する傾向にあり、幻覚やリスクにつながる可能性がある。
この問題に対処するため,我々はAsk-when-Needed (AwN) という新しいフレームワークを提案する。
さらに,ユーザとLLMのインタラクションに関わる作業量を削減し,ツール利用におけるLCMの性能を評価するため,ToolEvaluatorという自動評価ツールを設計した。
我々の実験は、AwNがNoisyToolBenchで既存のツール学習フレームワークを著しく上回っていることを示している。
今後の研究をサポートするため、関連するコードとデータセットをすべてリリースします。
関連論文リスト
- Can Tool-augmented Large Language Models be Aware of Incomplete Conditions? [33.74511128798095]
本研究では,大規模言語モデルが不完全条件を識別し,いつツールの使用を控えるかを適切に判断できるかどうかを検討する。
特定ツールの利用に必要な追加情報と適切なツールの欠如を識別するために,ほとんどのLCMが課題であることを確認した。
論文 参考訳(メタデータ) (2024-06-18T06:28:06Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning [57.523454568002144]
大きな言語モデル(LLM)は、常識的な推論と外部ツールの活用の能力を示している。
ツール学習を通じてLLMを活用したレコメンデーションのためのフレームワークであるToolRecを紹介する。
属性の粒度を探索するプロセスとして推薦プロセスを定式化する。
属性指向ツールには,ランクツールと検索ツールの2種類がある。
論文 参考訳(メタデータ) (2024-05-24T00:06:54Z) - Towards Practical Tool Usage for Continually Learning LLMs [28.62382804829694]
大規模言語モデルは、言語ベースのタスクを解くために生まれつきのスキルを示す。
しかし、彼らの知識はパラメータの中に直接格納され、時間内には静的のままである。
ツールの使用は、LLMがインターフェイスを通してアクセス可能なシステムに作業をオフロードするのに役立つ。
しかし、それらを使用するLCMは、長期間使用するためには、まだ非定常環境に適応する必要がある。
論文 参考訳(メタデータ) (2024-04-14T19:45:47Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
大規模言語モデル (LLM) は様々なNLPタスクにおいて顕著な性能を示した。
彼らはまだ幻覚や弱い数値推論のような困難に悩まされている。
これらの課題を克服するために、LLMの質問応答能力を高めるために外部ツールを使用することができる。
論文 参考訳(メタデータ) (2023-06-23T05:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。