Probing CP Violation and Mass Hierarchy in Neutrino Oscillations in Matter through Quantum Speed Limits
- URL: http://arxiv.org/abs/2405.13114v1
- Date: Tue, 21 May 2024 18:00:02 GMT
- Title: Probing CP Violation and Mass Hierarchy in Neutrino Oscillations in Matter through Quantum Speed Limits
- Authors: Subhadip Bouri, Abhishek Kumar Jha, Subhashish Banerjee,
- Abstract summary: We investigate CP violation and the mass hierarchy problem of neutrino oscillations in matter.
We use the quantum speed limits (QSLs) as a key analytical tool.
Results are illustrated using energy-varying sets of accelerator neutrino sources from experiments such as T2K, NOvA, and DUNE.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum speed limits (QSLs) set fundamental lower bounds on the time required for a quantum system to evolve from a given initial state to a final state. In this work, we investigate CP violation and the mass hierarchy problem of neutrino oscillations in matter using the QSL time as a key analytical tool. We examine the QSL time for the unitary evolution of two- and three-flavor neutrino states, both in vacuum and in the presence of matter. Two-flavor neutrino oscillations are used as a precursor to their three-flavor counterparts. We further compute the QSL time for neutrino state evolution and entanglement in terms of neutrino survival and oscillation probabilities, which are experimentally measurable quantities in neutrino experiments. A difference in the QSL time between the normal and inverted mass hierarchy scenarios, for neutrino state evolution as well as for entanglement, under the effect of a CP violation phase is observed. Our results are illustrated using energy-varying sets of accelerator neutrino sources from experiments such as T2K, NOvA, and DUNE. Notably, three-flavor neutrino oscillations in constant matter density exhibit faster state evolution across all these neutrino experiments in the normal mass hierarchy scenario. Additionally, we observe fast entanglement growth in DUNE assuming a normal mass hierarchy.
Related papers
- Gravitational Influence on the Quantum Speed Limit in Flavor Oscillations of Neutrino-Antineutrino System [0.0]
We derive an analytical expression for the four-vector gravitational potential in the underlying Hermitian Dirac Hamiltonian.
This gravitational potential leads to an axial vector term in the Dirac equation in curved spacetime, contributing to the effective mass matrix of the neutrino-antineutrino systems.
Our findings indicate that the gravitational field, expressed in BL coordinates, significantly influences the transition probabilities in two-flavor oscillations of the neutrino-antineutrino system.
arXiv Detail & Related papers (2024-11-27T18:48:39Z) - Influence of gravity on the quantum speed limit in neutrino oscillations [0.0]
We study the unitary evolution of the neutrino-antineutrino system in the presence of a gravitational field.
We observe quick suppression of entanglement by exploring the speed limit for entanglement entropy of two-flavor oscillations.
arXiv Detail & Related papers (2024-11-27T17:56:19Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Trade-off relations of quantum resource theory in neutrino oscillations [9.036748351752362]
The measure of quantumness in experimentally observed neutrino oscillations (NOs) is studied via quantum resource theory (QRT)
Here, we focus on the trade-off relations of QRT in the three-flavor NOs, based on Bell-type violations, first-order coherence and intrinsic concurrence, and the relative entropy of coherence.
The trade-off relations of QRT provide a method for studying how the quantum resources convert and distribute in NOs, which might inspire the future applications in quantum information processing using neutrinos.
arXiv Detail & Related papers (2022-12-19T09:38:13Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Role of non-gaussian quantum fluctuations in neutrino entanglement [0.0]
neutrino-neutrino coherent scattering can give rise to nontrivial quantum entanglement among neutrinos.
We observe that the entanglement induced by the coupling leads to strong delocalization in phase-space with largely non-Gaussian quantum fluctuations.
The link between the neutrino entanglement and quantum fluctuations is illustrated using the one- and two-neutrino entropy.
arXiv Detail & Related papers (2022-05-19T08:30:58Z) - Quantum coherence in neutrino oscillation in matter [0.0]
neutrino oscillation occurs because the quantum states of the produced and detected neutrinos are a coherent superposition of the mass eigenstates.
We consider the decoherence due to the neutrino interaction in the material medium with constant density in addition to the decoherence coming from the localization properties.
arXiv Detail & Related papers (2022-04-26T14:19:39Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.