Three-flavor Collective Neutrino Oscillations on D-Wave's {\tt Advantage} Quantum Annealer
- URL: http://arxiv.org/abs/2405.20436v2
- Date: Tue, 23 Jul 2024 23:08:39 GMT
- Title: Three-flavor Collective Neutrino Oscillations on D-Wave's {\tt Advantage} Quantum Annealer
- Authors: Ivan A. Chernyshev,
- Abstract summary: Simulations of Dirac neutrino-neutrino interactions performed on D-Wave Inc.'s tt Advantage 5000+ qubit quantum annealer.
The D-Wave tt Advantage annealer is shown to be able to reproduce time evolution with the precision of a classical machine for small number of neutrinos.
However, it suffers from poor scaling in qubit-count with the number of neutrinos.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In extreme environments such as core-collapse supernovae, neutron-star mergers, and the early Universe, neutrinos are dense enough that their self-interactions significantly affect, if not dominate, their flavor dynamics. In order to develop techniques for characterizing the resulting quantum entanglement, I present the results of simulations of Dirac neutrino-neutrino interactions that include all three physical neutrino flavors and were performed on D-Wave Inc.'s {\tt Advantage} 5000+ qubit quantum annealer. These results are checked against those from exact classical simulations, which are also used to compare the Dirac neutrino-neutrino interactions to neutrino-antineutrino and Majorana neutrino-neutrino interactions. The D-Wave {\tt Advantage} annealer is shown to be able to reproduce time evolution with the precision of a classical machine for small number of neutrinos and to do so without Trotter errors. However, it suffers from poor scaling in qubit-count with the number of neutrinos. Two approaches to improving the qubit-scaling are discussed, but only one of the two shows promise.
Related papers
- Neutrino oscillations originate from virtual excitation of Z bosons [0.0]
neutrino oscillations originate from virtual excitation of Z bosonic field diffusing over space.
When neutrino propagates in matter, its behavior is determined by the competition between the coherent flavor transformation and decoherence effect resulting from scatterings.
arXiv Detail & Related papers (2024-07-01T04:16:04Z) - Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration [0.0]
We develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes.
These models demonstrate the emergence of coherent flavor oscillations from the particle perspective.
arXiv Detail & Related papers (2024-02-07T16:43:27Z) - Quantum information and quantum simulation of neutrino physics [0.0]
neutrinos play a major role in driving dynamical and microphysical phenomena.
In extreme astrophysical environments such as supernovae and binary neutron star mergers, neutrinos play a major role in driving various dynamical and microphysical phenomena.
arXiv Detail & Related papers (2023-05-02T01:55:03Z) - Mixed states for neutral current neutrino oscillation [0.0]
neutrino-antineutrino pairs are produced coherently and they are detected with definite flavor in detectors.
We reanalyze this problem by considering some massive neutrinos mixed with light neutrinos.
We see that the oscillation pattern cannot be observed for incoherent neutrinos.
arXiv Detail & Related papers (2023-01-18T18:18:39Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Spectral splits and entanglement entropy in collective neutrino
oscillations [0.0]
We find an intriguing connection between the entropy of entanglement of individual neutrinos with the rest of the ensemble.
For various types of neutrino spectra, we demonstrate that the entanglement entropy is highest for the neutrinos whose locations in the energy spectrum are closest to the spectral split(s)
This trend demonstrates that the quantum entanglement is strongest among the neutrinos that are close to these splits, a behavior that seems to persist even as the size of the many-body system is increased.
arXiv Detail & Related papers (2021-09-18T19:46:29Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - The Neutrino Casimir Force [77.34726150561087]
We calculate the neutrino Casimir force between plates, allowing for two different mass eigenstates within the loop.
We discuss the possibility of distinguishing whether neutrinos are Majorana or Dirac fermions using these quantum forces.
arXiv Detail & Related papers (2020-03-24T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.