論文の概要: Towards Principled, Practical Policy Gradient for Bandits and Tabular MDPs
- arxiv url: http://arxiv.org/abs/2405.13136v2
- Date: Tue, 9 Jul 2024 16:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:11:39.377107
- Title: Towards Principled, Practical Policy Gradient for Bandits and Tabular MDPs
- Title(参考訳): バンディットとタブラルMDPの原則的・実践的政策グラディエントに向けて
- Authors: Michael Lu, Matin Aghaei, Anant Raj, Sharan Vaswani,
- Abstract要約: バンディットとマルコフ決定過程(MDP)に対する(確率的)ソフトマックスポリシー勾配(PG)法について検討する。
提案アルゴリズムは,技術結果と類似した理論的保証を提供するが,オラクルのような量の知識は必要としないことを示す。
マルチアームバンディット設定の場合,提案手法は明示的な探索や報奨ギャップの知識,報奨分布,ノイズを必要としない理論的なPGアルゴリズムを実現する。
- 参考スコア(独自算出の注目度): 9.58750210024265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider (stochastic) softmax policy gradient (PG) methods for bandits and tabular Markov decision processes (MDPs). While the PG objective is non-concave, recent research has used the objective's smoothness and gradient domination properties to achieve convergence to an optimal policy. However, these theoretical results require setting the algorithm parameters according to unknown problem-dependent quantities (e.g. the optimal action or the true reward vector in a bandit problem). To address this issue, we borrow ideas from the optimization literature to design practical, principled PG methods in both the exact and stochastic settings. In the exact setting, we employ an Armijo line-search to set the step-size for softmax PG and demonstrate a linear convergence rate. In the stochastic setting, we utilize exponentially decreasing step-sizes, and characterize the convergence rate of the resulting algorithm. We show that the proposed algorithm offers similar theoretical guarantees as the state-of-the art results, but does not require the knowledge of oracle-like quantities. For the multi-armed bandit setting, our techniques result in a theoretically-principled PG algorithm that does not require explicit exploration, the knowledge of the reward gap, the reward distributions, or the noise. Finally, we empirically compare the proposed methods to PG approaches that require oracle knowledge, and demonstrate competitive performance.
- Abstract(参考訳): バンディットおよび表型マルコフ決定過程(MDP)に対する(確率的)ソフトマックスポリシー勾配(PG)法を検討する。
PG目的は非凹面であるが、最近の研究では、最適政策への収束を達成するために、目的の滑らかさと勾配支配特性を用いている。
しかし、これらの理論的結果は、未知の問題依存量(例えば、バンドイット問題における最適作用や真の報酬ベクトル)に応じてアルゴリズムパラメータを設定する必要がある。
この問題に対処するために、最適化文献からアイデアを借りて、厳密かつ確率的な設定で実用的で原則化されたPG手法を設計する。
正確な設定では、Armijo線探索を用いて、ソフトマックスPGのステップサイズを設定し、線形収束率を示す。
確率的設定では、指数関数的に減少するステップサイズを利用し、結果のアルゴリズムの収束率を特徴付ける。
提案アルゴリズムは,技術結果と類似した理論的保証を提供するが,オラクルのような量の知識は必要としないことを示す。
マルチアームバンディット設定の場合,提案手法は明示的な探索や報奨ギャップの知識,報奨分布,ノイズを必要としない理論的なPGアルゴリズムを実現する。
最後に,提案手法と託宣知識を必要とするPG手法を実証的に比較し,競合性能を実証する。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
逆強化学習(IRL)は報酬関数と関連する最適ポリシーを回復することを目的としている。
IRLの多くのアルゴリズムは本質的にネスト構造を持つ。
我々は、報酬推定精度を損なわないIRLのための新しいシングルループアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-10-04T17:13:45Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
カーネル化されたバンディットアルゴリズムは、この問題に対して強い経験的および理論的性能を示した。
本稿では、未知関数を$epsilon$-一様近似で近似できるエンフェミス特定カーネル化帯域設定を、ある再生カーネルヒルベルト空間(RKHS)において有界ノルムを持つ関数で導入する。
提案アルゴリズムは,不特定性に関する事前知識を伴わず,$epsilon$への最適依存を実現する。
論文 参考訳(メタデータ) (2021-11-09T09:00:02Z) - Reinforcement Learning for Finite-Horizon Restless Multi-Armed
Multi-Action Bandits [8.136957953239254]
本稿では、R(MA)2Bと呼ばれる複数の動作を持つ有限ホライゾンレス・マルチアームバンディット問題について検討する。
各アームの状態は、制御されたマルコフ決定プロセス(MDP)に従って進化し、アームを引く報酬は、対応するMDPの現在の状態と、取られたアクションの両方に依存する。
最適政策の発見は典型的には難解であるため,我々はOccupancy-Measured-Reward Index Policyと呼ぶ,計算に訴える指標ポリシーを提案する。
論文 参考訳(メタデータ) (2021-09-20T21:40:12Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
ガウス過程(GP)は、モデルの不確実性の原理的計算を可能にし、安全性に重要なアプリケーションに魅力的です。
境界付き摂動に対するモデル決定の不変性として定義されるGPの対向的堅牢性を分析するためのフレームワークを提案する。
我々は境界を洗練し、任意の$epsilon > 0$に対して、我々のアルゴリズムが有限個の反復で実際の値に$epsilon$-closeの値に収束することを保証していることを示す分岐とバウンドのスキームを開発する。
論文 参考訳(メタデータ) (2021-04-07T15:14:56Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
待ち行列ネットワークのためのポリシ最適化アルゴリズムを開発した。
このアルゴリズムは、文学における最先端よりも優れた制御ポリシーを一貫して生成する。
PPOアルゴリズムの成功の鍵は、相対値関数を推定するために3つの分散還元技術を使用することである。
論文 参考訳(メタデータ) (2020-07-31T01:02:57Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
本稿では,ロバストマルコフ決定過程(RMDP)におけるモデルレス強化学習の課題について述べる。
本稿では、まず、ポリシー評価のための多段階オンラインモデルフリー学習アルゴリズムであるRobust Least Squares Policy Evaluationアルゴリズムを提案する。
次に,ロバスト・ラスト・スクエアズ・ポリシー・イテレーション (RLSPI) アルゴリズムを提案し,ロバスト・ラスト・スクエアズ・ポリシーを最適に学習する。
論文 参考訳(メタデータ) (2020-06-20T16:26:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。