論文の概要: A novel reliability attack of Physical Unclonable Functions
- arxiv url: http://arxiv.org/abs/2405.13147v1
- Date: Tue, 21 May 2024 18:34:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:13:10.864690
- Title: A novel reliability attack of Physical Unclonable Functions
- Title(参考訳): 身体的不可避関数の新しい信頼性攻撃
- Authors: Gaoxiang Li, Yu Zhuang,
- Abstract要約: Physical Unclonable Functions(PUF)は、IoTデバイスのための有望なセキュリティプリミティブとして登場している。
その強みにもかかわらず、PUFは従来のおよび信頼性ベースの攻撃を含む機械学習(ML)攻撃に対して脆弱である。
- 参考スコア(独自算出の注目度): 1.9336815376402723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical Unclonable Functions (PUFs) are emerging as promising security primitives for IoT devices, providing device fingerprints based on physical characteristics. Despite their strengths, PUFs are vulnerable to machine learning (ML) attacks, including conventional and reliability-based attacks. Conventional ML attacks have been effective in revealing vulnerabilities of many PUFs, and reliability-based ML attacks are more powerful tools that have detected vulnerabilities of some PUFs that are resistant to conventional ML attacks. Since reliability-based ML attacks leverage information of PUFs' unreliability, we were tempted to examine the feasibility of building defense using reliability enhancing techniques, and have discovered that majority voting with reasonably high repeats provides effective defense against existing reliability-based ML attack methods. It is known that majority voting reduces but does not eliminate unreliability, we are motivated to investigate if new attack methods exist that can capture the low unreliability of highly but not-perfectly reliable PUFs, which led to the development of a new reliability representation and the new representation-enabled attack method that has experimentally cracked PUFs enhanced with majority voting of high repetitions.
- Abstract(参考訳): Physical Unclonable Functions(PUF)は、IoTデバイスの将来的なセキュリティプリミティブとして登場し、物理的特性に基づいたデバイスの指紋を提供する。
その強みにもかかわらず、PUFは従来のおよび信頼性ベースの攻撃を含む機械学習(ML)攻撃に対して脆弱である。
従来のML攻撃は多くのPUFの脆弱性を明らかにするのに有効であり、信頼性ベースのML攻撃は従来のML攻撃に耐性のあるPUFの脆弱性を検出する強力なツールである。
信頼性に基づくML攻撃は,PUFの信頼性の低い情報を活用しているため,信頼性向上技術を用いて,ビルディングディフェンスの実現可能性を検討した。
多数決は信頼性が低下するが,信頼性が低いPUFの信頼性が低い新たな攻撃方法が存在するかどうかを調査する動機があることが知られており,新たな信頼性表現と,高繰り返しの多数決によって強化された新しい表現可能な攻撃方法の開発につながっている。
関連論文リスト
- Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and
Security in IoT Devices [2.28438857884398]
物理的に非閉塞関数(PUF)は、固有のハードウェアのバリエーションからユニークな暗号鍵を生成する。
Arbiter PUFs (APUFs) や XOR Arbiter PUFs (XOR-PUFs) のような従来のPUFは、機械学習(ML)や信頼性ベースの攻撃の影響を受けやすい。
本稿では,信頼性を高めるための事前選択戦略を取り入れたCDC-XPUF設計を提案し,新しい軽量アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-09-26T14:50:20Z) - Tamper-Resistant Safeguards for Open-Weight LLMs [57.90526233549399]
オープンウェイトLLMにタンパ耐性保護具を組み込む方法を開発した。
本手法は良性を保持しながらタンパー抵抗を大幅に改善する。
以上の結果から, タンパー抵抗はトラクタブルな問題であることがわかった。
論文 参考訳(メタデータ) (2024-08-01T17:59:12Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks [2.369276238599885]
機械学習(ML)攻撃の訓練に必要なデータセットを生成するための計算PUFモデルについて述べる。
モデル化されたPUFは均一な白色雑音に類似した分布を生成する。
予備的な解析は、PUFが生成する敵ネットワークに類似したレジリエンスを示すことを示唆している。
論文 参考訳(メタデータ) (2024-04-03T03:58:21Z) - Attacking Delay-based PUFs with Minimal Adversary Model [13.714598539443513]
Physically Unclonable Functions (PUF)は、軽量デバイス認証のための合理化されたソリューションを提供する。
遅延ベースのArbiter PUFは実装の容易さと膨大なチャレンジスペースを持ち、大きな注目を集めている。
モデリングに抵抗するPUFの開発と、それらに対する機械学習攻撃の考案の間には、研究が偏在している。
論文 参考訳(メタデータ) (2024-03-01T11:35:39Z) - FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning(FL)は、集中型機械学習(ML)デプロイメントに関連する典型的なプライバシ問題に対する、有望なアプローチである。
そのよく知られた利点にもかかわらず、FLはビザンツの行動や毒殺攻撃のようなセキュリティ攻撃に弱い。
提案手法は各種モデル毒殺攻撃に対して試験され,最先端の凝集法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-15T16:42:04Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
ディープニューラルネットワークはコンピュータビジョンタスクにおいて優れたパフォーマンスを示すが、現実の敵攻撃に対する脆弱性は深刻なセキュリティ上の懸念を引き起こす。
本稿では、敵チャネルの注意力を利用して、浅いネットワーク層における悪意のある物体を素早く識別・追跡する、効果的な注意に基づく防御機構を提案する。
また、効率的な多フレーム防御フレームワークを導入し、防御性能と計算コストの両方を評価することを目的とした広範な実験を通じて、その有効性を検証した。
論文 参考訳(メタデータ) (2023-11-19T00:47:17Z) - PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid
Intra-Group-based Authentication with DRAM-PUFs Using Machine Learning [10.445311342905118]
機械学習(ML)を用いて,DRAM PUF応答の起源を正確に識別する分類システムを提案する。
特徴抽出のための改良深部畳み込みニューラルネットワーク(CNN)を用いて,最大98%の分類精度を実現した。
論文 参考訳(メタデータ) (2022-07-11T08:13:08Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Testing Robustness Against Unforeseen Adversaries [54.75108356391557]
対向ロバストネスの研究は主にL_p摂動に焦点を当てている。
現実世界のアプリケーションでは、開発者はシステムが直面するあらゆる攻撃や汚職にアクセスできる可能性は低い。
我々は、予期せぬ敵に対して、モデルロバスト性を評価するためのフレームワークであるImageNet-UAを紹介する。
論文 参考訳(メタデータ) (2019-08-21T17:36:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。