Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction
- URL: http://arxiv.org/abs/2405.13152v3
- Date: Wed, 23 Oct 2024 12:56:05 GMT
- Title: Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction
- Authors: Shiji Huang, Lei Ye, Min Chen, Wenhai Luo, Dihong Wang, Chenqi Xu, Deyuan Liang,
- Abstract summary: We present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores.
Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward.
- Score: 1.6954753390775528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A thorough understanding of the interaction between the target agent and surrounding agents is a prerequisite for accurate trajectory prediction. Although many methods have been explored, they all assign correlation coefficients to surrounding agents in a purely learning-based manner. In this study, we present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores. Surprisingly, these simple modifications can significantly improve prediction performance and substantially reduce computational costs. Additionally, ASPILin models the interacting agents at each past time step separately, rather than only modeling the interacting agents at the current time step. This clarifies the causal chain of the target agent's historical trajectory and helps the model better understand dynamic interactions. We intentionally simplified our model in other aspects, such as map encoding. Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward, outperforming other state-of-the-art methods.
Related papers
- SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction [21.780343024406285]
SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups.
Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data.
A global trajectory is introduced to enable more accurate and efficient parallel predictions.
arXiv Detail & Related papers (2025-04-22T06:14:49Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction.
We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions.
We also propose an approach to curate interaction-heavy scenarios from datasets.
arXiv Detail & Related papers (2024-01-15T14:43:40Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
We develop a variational auto-encoder framework that integrates graph-based representations and timesequence models.
Our model infers dynamic interaction graphs augmented with interpretable edge features that characterize the interactions.
We validate our approach through extensive experiments on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-01-07T22:49:24Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Inferring effective couplings with Restricted Boltzmann Machines [3.150368120416908]
Generative models attempt to encode correlations observed in the data at the level of the Boltzmann weight associated with an energy function in the form of a neural network.
We propose a solution by implementing a direct mapping between the Restricted Boltzmann Machine and an effective Ising spin Hamiltonian.
arXiv Detail & Related papers (2023-09-05T14:55:09Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - JFP: Joint Future Prediction with Interactive Multi-Agent Modeling for
Autonomous Driving [12.460224193998362]
We propose an end-to-end trainable model that learns directly the interaction between pairs of agents in a structured, graphical model formulation.
Our approach improves significantly on the trajectory overlap metrics while obtaining on-par or better performance on single-agent trajectory metrics.
arXiv Detail & Related papers (2022-12-16T20:59:21Z) - SMEMO: Social Memory for Trajectory Forecasting [34.542209630734234]
We present a neural network based on an end-to-end trainable working memory, which acts as an external storage.
We show that our method is capable of learning explainable cause-effect relationships between motions of different agents, obtaining state-of-the-art results on trajectory forecasting datasets.
arXiv Detail & Related papers (2022-03-23T14:40:20Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
We formulate an attention model for multi-agent interactions based on a total variation temporal smoothness prior.
We show its advantages in terms of prediction accuracy by comparing it with the state-of-the-art approaches on both synthetic and naturalistic driving data.
arXiv Detail & Related papers (2022-03-08T21:54:28Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially on rare classes.
arXiv Detail & Related papers (2021-09-09T06:02:50Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning [92.05556163518999]
MARL exacerbates matters by imposing various constraints on communication and observability.
For value-based methods, it poses challenges in accurately representing the optimal value function.
For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic.
We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function.
arXiv Detail & Related papers (2021-05-31T23:08:05Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.