Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction
- URL: http://arxiv.org/abs/2203.04421v1
- Date: Tue, 8 Mar 2022 21:54:28 GMT
- Title: Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction
- Authors: Zhangjie Cao, Erdem B{\i}y{\i}k, Guy Rosman, Dorsa Sadigh
- Abstract summary: We formulate an attention model for multi-agent interactions based on a total variation temporal smoothness prior.
We show its advantages in terms of prediction accuracy by comparing it with the state-of-the-art approaches on both synthetic and naturalistic driving data.
- Score: 32.970169015894705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent interactions are important to model for forecasting other agents'
behaviors and trajectories. At a certain time, to forecast a reasonable future
trajectory, each agent needs to pay attention to the interactions with only a
small group of most relevant agents instead of unnecessarily paying attention
to all the other agents. However, existing attention modeling works ignore that
human attention in driving does not change rapidly, and may introduce
fluctuating attention across time steps. In this paper, we formulate an
attention model for multi-agent interactions based on a total variation
temporal smoothness prior and propose a trajectory prediction architecture that
leverages the knowledge of these attended interactions. We demonstrate how the
total variation attention prior along with the new sequence prediction loss
terms leads to smoother attention and more sample-efficient learning of
multi-agent trajectory prediction, and show its advantages in terms of
prediction accuracy by comparing it with the state-of-the-art approaches on
both synthetic and naturalistic driving data. We demonstrate the performance of
our algorithm for trajectory prediction on the INTERACTION dataset on our
website.
Related papers
- Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
We present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores.
Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward.
arXiv Detail & Related papers (2024-05-21T18:45:18Z) - Multi-agent Traffic Prediction via Denoised Endpoint Distribution [23.767783008524678]
Trajectory prediction at high speeds requires historical features and interactions with surrounding entities.
We present the Denoised Distribution model for trajectory prediction.
Our approach significantly reduces model complexity and performance through endpoint information.
arXiv Detail & Related papers (2024-05-11T15:41:32Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
We introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE)
MATE assesses the interactive motion of agents by employing neural interaction energy.
To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint.
arXiv Detail & Related papers (2024-04-25T12:47:47Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction.
We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions.
We also propose an approach to curate interaction-heavy scenarios from datasets.
arXiv Detail & Related papers (2024-01-15T14:43:40Z) - M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction [26.49897317427192]
Existing models excel at predicting marginal trajectories for single agents, yet it remains an open question to jointly predict scene compliant trajectories over multiple agents.
In this work, we exploit the underlying relations between interacting agents and decouple the joint prediction problem into marginal prediction problems.
Our proposed approach M2I first classifies interacting agents as pairs of influencers and reactors, and then leverages a marginal prediction model and a conditional prediction model to predict trajectories for the influencers and reactors, respectively.
arXiv Detail & Related papers (2022-02-24T03:28:26Z) - Dyadic Human Motion Prediction [119.3376964777803]
We introduce a motion prediction framework that explicitly reasons about the interactions of two observed subjects.
Specifically, we achieve this by introducing a pairwise attention mechanism that models the mutual dependencies in the motion history of the two subjects.
This allows us to preserve the long-term motion dynamics in a more realistic way and more robustly predict unusual and fast-paced movements.
arXiv Detail & Related papers (2021-12-01T10:30:40Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
We propose a generic motion forecasting framework with dynamic key information selection and ranking based on a hybrid attention mechanism.
The framework is instantiated to handle multi-agent trajectory prediction and human motion forecasting tasks.
We validate the framework on both synthetic simulations and motion forecasting benchmarks in different domains.
arXiv Detail & Related papers (2021-08-03T06:30:30Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.