論文の概要: Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems
- arxiv url: http://arxiv.org/abs/2405.13191v1
- Date: Tue, 21 May 2024 20:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:03:26.401649
- Title: Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems
- Title(参考訳): Pragmatic auditing: 機械学習システムの監査のためのパイロット駆動型アプローチ
- Authors: Djalel Benbouzid, Christiane Plociennik, Laura Lucaj, Mihai Maftei, Iris Merget, Aljoscha Burchardt, Marc P. Hauer, Abdeldjallil Naceri, Patrick van der Smagt,
- Abstract要約: 本稿では,欧州委員会が公表したAI-HLEGガイドラインを拡張する手順について述べる。
監査手順は、ドキュメント、説明責任、品質保証を明確に重視するMLライフサイクルモデルに基づいています。
2つの異なる組織による実世界のユースケースで実施される2つのパイロットについて説明する。
- 参考スコア(独自算出の注目度): 5.26895401335509
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The growing adoption and deployment of Machine Learning (ML) systems came with its share of ethical incidents and societal concerns. It also unveiled the necessity to properly audit these systems in light of ethical principles. For such a novel type of algorithmic auditing to become standard practice, two main prerequisites need to be available: A lifecycle model that is tailored towards transparency and accountability, and a principled risk assessment procedure that allows the proper scoping of the audit. Aiming to make a pragmatic step towards a wider adoption of ML auditing, we present a respective procedure that extends the AI-HLEG guidelines published by the European Commission. Our audit procedure is based on an ML lifecycle model that explicitly focuses on documentation, accountability, and quality assurance; and serves as a common ground for alignment between the auditors and the audited organisation. We describe two pilots conducted on real-world use cases from two different organisations and discuss the shortcomings of ML algorithmic auditing as well as future directions thereof.
- Abstract(参考訳): 機械学習(ML)システムの採用とデプロイの増加は、倫理的インシデントと社会的な懸念の共有によってもたらされた。
また、倫理的原則に照らして、これらのシステムを適切に監査する必要があることも明らかにした。
このような新しいタイプのアルゴリズム監査が標準化されるためには、透明性と説明責任に合わせたライフサイクルモデルと、監査の適切なスクーピングを可能にする原則化されたリスク評価手順という、2つの主要な前提条件が必要である。
ML監査の普及に向けて実践的な一歩を踏み出すため、欧州委員会が発行するAI-HLEGガイドラインを拡張する手順をそれぞれ提示する。
監査手続きは、文書化、説明責任、品質保証を明確に重視するMLライフサイクルモデルに基づいており、監査者と監査組織との整合の共通基盤となっている。
2つの異なる組織による実世界のユースケースで実施された2つのパイロットについて述べ、MLアルゴリズム監査の欠点と今後の方向性について論じる。
関連論文リスト
- From Transparency to Accountability and Back: A Discussion of Access and Evidence in AI Auditing [1.196505602609637]
監査は、デプロイ前のリスクアセスメント、進行中の監視、コンプライアンステストなど、さまざまな形式で実施することができる。
AI監査には、その実装を複雑にする多くの運用上の課題がある。
我々は、監査は自然な仮説テストとして、並列仮説テストと法的手続きを引き出すことができると論じ、このフレーミングは、監査実施に関する明確かつ解釈可能なガイダンスを提供すると論じる。
論文 参考訳(メタデータ) (2024-10-07T06:15:46Z) - A Framework for Assurance Audits of Algorithmic Systems [2.2342503377379725]
本稿では,運用可能なコンプライアンスおよび保証外部監査フレームワークとして,基準監査を提案する。
AI監査も同様に、AI組織が人間の価値を害し、維持する方法でアルゴリズムを管理する能力について、ステークホルダーに保証を提供するべきだ、と私たちは主張する。
我々は、より成熟した金融監査産業の実践をAI監査に適用する上でのメリット、固有の制限、実装上の課題について、批判的な議論をすることで締めくくります。
論文 参考訳(メタデータ) (2024-01-26T14:38:54Z) - Who Audits the Auditors? Recommendations from a field scan of the
algorithmic auditing ecosystem [0.971392598996499]
AI監査エコシステムの最初の包括的なフィールドスキャンを提供する。
私たちは、新たなベストプラクティスと、一般的になりつつある方法やツールを特定します。
これらの監査の質と影響を改善するための政策勧告を概説する。
論文 参考訳(メタデータ) (2023-10-04T01:40:03Z) - Auditing large language models: a three-layered approach [0.0]
大規模言語モデル(LLM)は人工知能(AI)研究における大きな進歩を表している。
LLMはまた、重大な倫理的・社会的課題と結びついている。
これまでの研究は、監査を有望なガバナンスメカニズムとして取り上げてきた。
論文 参考訳(メタデータ) (2023-02-16T18:55:21Z) - Flexible categorization for auditing using formal concept analysis and
Dempster-Shafer theory [55.878249096379804]
我々は、異なる金融口座に対する異なる利息の程度に応じて分類する様々な方法を研究する。
本稿で開発したフレームワークは,説明可能な分類の獲得と研究のための公式な基盤を提供する。
論文 参考訳(メタデータ) (2022-10-31T13:49:16Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
本研究は、IRSによる税務監査選択を通知するシステムの文脈におけるアルゴリズムフェアネスの問題について検討する。
監査を選択するための柔軟な機械学習手法が、垂直エクイティにどのように影響するかを示す。
この結果は,公共セクター全体でのアルゴリズムツールの設計に影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-20T16:27:06Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
遺伝的プログラミング(GP)と強化学習(RL)はフロー制御において人気を集めている。
この研究は2つの比較分析を行い、地球規模の最適化手法に対して最も代表的なアルゴリズムのいくつかをベンチマークする。
論文 参考訳(メタデータ) (2022-02-23T18:11:19Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
パラメータ化された階層的手順(PHP)で表される制御ポリシーの模倣学習のための変分推論手法を提案する。
本手法は, 教師による実演の観察・行動トレースのデータセットにおける階層構造を, 手続き呼び出しや用語の待ち行列に近似した後続分布を学習することによって発見する。
階層的模倣学習(hierarchical mimicion learning)の文脈における変分推論の新たな利点を実証する。
論文 参考訳(メタデータ) (2019-12-29T08:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。