論文の概要: Comparative analysis of machine learning methods for active flow control
- arxiv url: http://arxiv.org/abs/2202.11664v2
- Date: Fri, 25 Feb 2022 08:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 12:06:27.063596
- Title: Comparative analysis of machine learning methods for active flow control
- Title(参考訳): アクティブフロー制御のための機械学習手法の比較解析
- Authors: Fabio Pino, Lorenzo Schena, Jean Rabault, Alexander Kuhnle and Miguel
A. Mendez
- Abstract要約: 遺伝的プログラミング(GP)と強化学習(RL)はフロー制御において人気を集めている。
この研究は2つの比較分析を行い、地球規模の最適化手法に対して最も代表的なアルゴリズムのいくつかをベンチマークする。
- 参考スコア(独自算出の注目度): 60.53767050487434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning frameworks such as Genetic Programming (GP) and
Reinforcement Learning (RL) are gaining popularity in flow control. This work
presents a comparative analysis of the two, bench-marking some of their most
representative algorithms against global optimization techniques such as
Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we
review the general framework of the flow control problem, linking optimal
control theory with model-free machine learning methods. Then, we test the
control algorithms on three test cases. These are (1) the stabilization of a
nonlinear dynamical system featuring frequency cross-talk, (2) the wave
cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake
flow. Although the control of these problems has been tackled in the recent
literature with one method or the other, we present a comprehensive comparison
to illustrate their differences in exploration versus exploitation and their
balance between `model capacity' in the control law definition versus `required
complexity'. We believe that such a comparison opens the path towards
hybridization of the various methods, and we offer some perspective on their
future development in the literature of flow control problems.
- Abstract(参考訳): 遺伝的プログラミング(gp)や強化学習(rl)といった機械学習フレームワークがフロー制御で人気を集めている。
本研究は,bayesian optimization (bo) やlipschitz global optimization (lipo) といった大域的最適化手法に対して,最も代表的なアルゴリズムのいくつかをベンチマークし,両者の比較分析を行う。
まず, 最適制御理論とモデルフリー機械学習法を結びつけ, フロー制御問題の一般的な枠組みについて検討する。
そして、3つのテストケースで制御アルゴリズムをテストする。
1) 周波数クロストークを特徴とする非線形力学系の安定化, (2) バーガース流からのウェーブキャンセリング, (3) シリンダ後流における抗力低減などである。
これらの問題に対するコントロールは,近年の文献において,いずれかの手法で取り組まれているが,本論文では,探索と搾取の違いと,制御法定義における「モデル能力」と「要求複雑性」とのバランスを包括的に比較する。
このような比較が様々な手法のハイブリダイゼーションへの道を開くと信じており、フロー制御問題の文献における今後の発展を展望する。
関連論文リスト
- Training Free Guided Flow Matching with Optimal Control [6.729886762762167]
最適制御を用いたガイドフローマッチングのための学習自由フレームワークであるOC-Flowを提案する。
OC-Flowは,テキスト誘導画像操作,条件分子生成,全原子ペプチド設計において優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-23T17:53:11Z) - Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Sublinear Regret for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems [10.404992912881601]
拡散に対する連続時間線形四元数制御(LQ)のクラスに対する強化学習について検討した。
本研究では,モデルパラメータの知識にも,その推定にも依存しないモデルフリーアプローチを適用し,最適なポリシーパラメータを直接学習するためのアクタ批判アルゴリズムを考案する。
論文 参考訳(メタデータ) (2024-07-24T12:26:21Z) - Stochastic Optimal Control Matching [53.156277491861985]
最適制御のための新しい反復拡散最適化(IDO)技術である最適制御マッチング(SOCM)を導入する。
この制御は、一致するベクトル場に適合しようとすることで、最小二乗問題を通じて学習される。
実験により,本アルゴリズムは最適制御のための既存のすべての IDO 手法よりも低い誤差を実現する。
論文 参考訳(メタデータ) (2023-12-04T16:49:43Z) - Towards a Theoretical Foundation of Policy Optimization for Learning
Control Policies [26.04704565406123]
グラディエントベースの手法は、様々なアプリケーション領域におけるシステム設計と最適化に広く使われてきた。
近年、制御と強化学習の文脈において、これらの手法の理論的性質の研究に新たな関心が寄せられている。
本稿では、フィードバック制御合成のための勾配に基づく反復的アプローチであるポリシー最適化に関する最近の開発について概説する。
論文 参考訳(メタデータ) (2022-10-10T16:13:34Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。