論文の概要: Empowering Urban Traffic Management: Elevated 3D LiDAR for Data Collection and Advanced Object Detection Analysis
- arxiv url: http://arxiv.org/abs/2405.13202v1
- Date: Tue, 21 May 2024 21:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:03:26.382685
- Title: Empowering Urban Traffic Management: Elevated 3D LiDAR for Data Collection and Advanced Object Detection Analysis
- Title(参考訳): 都市交通管理の強化:データ収集のための高次3次元LiDARと高度な物体検出分析
- Authors: Nawfal Guefrachi, Hakim Ghazzai, Ahmad Alsharoa,
- Abstract要約: 本稿では,高機能LiDARセンサのパワーを利用して,交通シナリオにおける3次元物体の検出と解析を変換する新しいフレームワークを提案する。
実世界のトラフィックデータセットの取得に制限があるため、シミュレータを用いて特定のシナリオに対して3Dポイントクラウドを生成する。
- 参考スコア(独自算出の注目度): 4.831084635928491
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The 3D object detection capabilities in urban environments have been enormously improved by recent developments in Light Detection and Range (LiDAR) technology. This paper presents a novel framework that transforms the detection and analysis of 3D objects in traffic scenarios by utilizing the power of elevated LiDAR sensors. We are presenting our methodology's remarkable capacity to collect complex 3D point cloud data, which allows us to accurately and in detail capture the dynamics of urban traffic. Due to the limitation in obtaining real-world traffic datasets, we utilize the simulator to generate 3D point cloud for specific scenarios. To support our experimental analysis, we firstly simulate various 3D point cloud traffic-related objects. Then, we use this dataset as a basis for training and evaluating our 3D object detection models, in identifying and monitoring both vehicles and pedestrians in simulated urban traffic environments. Next, we fine tune the Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) architecture, making it more suited to handle and understand the massive volumes of point cloud data generated by our urban traffic simulations. Our results show the effectiveness of the proposed solution in accurately detecting objects in traffic scenes and highlight the role of LiDAR in improving urban safety and advancing intelligent transportation systems.
- Abstract(参考訳): 都市環境における3次元物体検出能力は、近年の光検出・距離(LiDAR)技術の発展により大幅に改善されている。
本稿では,高機能LiDARセンサのパワーを利用して,交通シナリオにおける3次元物体の検出と解析を変換する新しいフレームワークを提案する。
複雑な3Dポイントのクラウドデータを収集し、都市交通のダイナミクスを正確にかつ詳細に捉えることができる。
実世界のトラフィックデータセットの取得に制限があるため、シミュレータを用いて特定のシナリオに対して3Dポイントクラウドを生成する。
実験的な解析を支援するために,まず,様々な3次元クラウドトラフィック関連オブジェクトをシミュレートする。
そして、このデータセットを、都市交通環境を模擬した車と歩行者の両方を識別・監視するために、我々の3Dオブジェクト検出モデルのトレーニングと評価の基盤として使用する。
次に、Voxel-Region-based Convolutional Neural Network (PV-RCNN)アーキテクチャを微調整し、都市交通シミュレーションによって生成された大量のポイントクラウドデータを処理し、理解するのにより適している。
本研究は,交通現場における物体の正確な検出における提案手法の有効性を示し,都市安全の向上とインテリジェント交通システムの高度化におけるLiDARの役割を強調した。
関連論文リスト
- Leveraging 3D LiDAR Sensors to Enable Enhanced Urban Safety and Public Health: Pedestrian Monitoring and Abnormal Activity Detection [7.840164209935446]
本稿では,都市交通シナリオにおける3次元物体検出・活動分類の高度化のための新しい枠組みを提案する。
高度LiDARを用いることで、詳細な3Dポイントクラウドデータを取得し、正確な歩行者活動監視を可能にする。
提案手法では, 3次元の頑健な検出を行うために, Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) を改良し, 歩行者活動の分類に PointNet を用いる。
論文 参考訳(メタデータ) (2024-04-17T01:23:49Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
本研究では,複数のLiDARシステムの必要性を緩和し,無駄な3Dアノテーションプロセスを簡単にする,革新的なフレームワークを提案する。
2次元境界箱検出と抽出された高さ情報を用いて,人間の介入なしに3次元境界箱を自動的に生成することができる。
論文 参考訳(メタデータ) (2024-01-13T01:22:20Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
本稿では,Drive-3DAugと呼ばれる3次元データ拡張手法を提案する。
まずNeural Radiance Field(NeRF)を用いて,背景および前景の3次元モデルの再構成を行う。
そして、予め定義された背景の有効領域に適応した位置と向きの3Dオブジェクトを配置することにより、拡張駆動シーンを得ることができる。
論文 参考訳(メタデータ) (2023-03-18T05:51:05Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Real-Time And Robust 3D Object Detection with Roadside LiDARs [20.10416681832639]
道路沿いのLiDARにおける交通参加者をリアルタイムに検出できる3次元物体検出モデルを設計する。
我々のモデルは既存の3D検出器をベースラインとして使用し、精度を向上させる。
スマートシティのアプリケーションに使用できるLiDARベースの3D検出器に多大な貢献をしています。
論文 参考訳(メタデータ) (2022-07-11T21:33:42Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
交差点における車両の7DoF予測は,道路利用者間の潜在的な衝突を評価する上で重要な課題である。
交通監視カメラ用3次元物体検出装置の微調整を弱教師付きで行う手法を開発した。
提案手法は,自動運転車のデータセット上で最上位のモノクル3Dオブジェクト検出器と同等の精度で車両の7DoFの予測精度を推定する。
論文 参考訳(メタデータ) (2021-10-21T08:26:48Z) - Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in
Adverse Weather [92.84066576636914]
本研究は,霧の天候下でのLiDARによる3次元物体検出の課題に対処する。
我々は、物理的に正確な霧をクリア・ウェザー・シーンにシミュレートすることでこの問題に対処する。
Seeing Through Fogデータセットに強力な3Dオブジェクト検出ベースラインを提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2021-08-11T14:37:54Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。