FLARE up your data: Diffusion-based Augmentation Method in Astronomical Imaging
- URL: http://arxiv.org/abs/2405.13267v1
- Date: Wed, 22 May 2024 00:40:37 GMT
- Title: FLARE up your data: Diffusion-based Augmentation Method in Astronomical Imaging
- Authors: Mohammed Talha Alam, Raza Imam, Mohsen Guizani, Fakhri Karray,
- Abstract summary: We propose a textittwo-stage augmentation framework entitled as textbfFLARE
We first apply lower (LR) to higher resolution (HR) conversion followed by standard augmentations.
Secondly, we integrate a diffusion approach to synthetically generate samples using class-concatenated prompts.
- Score: 31.75799061059914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intersection of Astronomy and AI encounters significant challenges related to issues such as noisy backgrounds, lower resolution (LR), and the intricate process of filtering and archiving images from advanced telescopes like the James Webb. Given the dispersion of raw images in feature space, we have proposed a \textit{two-stage augmentation framework} entitled as \textbf{FLARE} based on \underline{f}eature \underline{l}earning and \underline{a}ugmented \underline{r}esolution \underline{e}nhancement. We first apply lower (LR) to higher resolution (HR) conversion followed by standard augmentations. Secondly, we integrate a diffusion approach to synthetically generate samples using class-concatenated prompts. By merging these two stages using weighted percentiles, we realign the feature space distribution, enabling a classification model to establish a distinct decision boundary and achieve superior generalization on various in-domain and out-of-domain tasks. We conducted experiments on several downstream cosmos datasets and on our optimally distributed \textbf{SpaceNet} dataset across 8-class fine-grained and 4-class macro classification tasks. FLARE attains the highest performance gain of 20.78\% for fine-grained tasks compared to similar baselines, while across different classification models, FLARE shows a consistent increment of an average of +15\%. This outcome underscores the effectiveness of the FLARE method in enhancing the precision of image classification, ultimately bolstering the reliability of astronomical research outcomes. % Our code and SpaceNet dataset will be released to the public soon. Our code and SpaceNet dataset is available at \href{https://github.com/Razaimam45/PlanetX_Dxb}{\textit{https://github.com/Razaimam45/PlanetX\_Dxb}}.
Related papers
- Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency [57.961869351897384]
We propose a framework based on cross-modal semantic consistency for efficient image clustering.<n>Our framework first builds a strong foundation via Cross-Modal Semantic Consistency.<n>In the first stage, we train lightweight clustering heads to align with the rich semantics of the pre-trained model.<n>In the second stage, we introduce a Self-Enhanced fine-tuning strategy.
arXiv Detail & Related papers (2025-08-02T08:12:57Z) - Subspace Clustering in Wavelet Packets Domain [1.3812010983144802]
Subspace clustering (SC) algorithms utilize the union of subspaces model to cluster data points according to the subspaces from which they are drawn.
To better address separability of subspaces and robustness to noise we propose a wavelet packet (WP) based transform domain subspace clustering.
arXiv Detail & Related papers (2024-06-06T07:49:11Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - Dataset Distillation via Factorization [58.8114016318593]
We introduce a emphdataset factorization approach, termed emphHaBa, which is a plug-and-play strategy portable to any existing dataset distillation (DD) baseline.
emphHaBa explores decomposing a dataset into two components: data emphHallucination networks and emphBases.
Our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65%.
arXiv Detail & Related papers (2022-10-30T08:36:19Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - FuSS: Fusing Superpixels for Improved Segmentation Consistency [2.7771471571972333]
We propose two approaches to improve the semantic consistency of Open Set Semantic.
First, we propose a method called OpenGMM to model the distribution of pixels for each class in a multimodal manner.
The second approach is a post-processing which uses superpixels to enforce highly homogeneous regions to behave equally.
arXiv Detail & Related papers (2022-06-06T16:14:19Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Low Light Image Enhancement via Global and Local Context Modeling [164.85287246243956]
We introduce a context-aware deep network for low-light image enhancement.
First, it features a global context module that models spatial correlations to find complementary cues over full spatial domain.
Second, it introduces a dense residual block that captures local context with a relatively large receptive field.
arXiv Detail & Related papers (2021-01-04T09:40:54Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections.
We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints.
arXiv Detail & Related papers (2020-04-06T11:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.