Realization of a crosstalk-free multi-ion node for long-distance quantum networking
- URL: http://arxiv.org/abs/2405.13369v1
- Date: Wed, 22 May 2024 05:58:37 GMT
- Title: Realization of a crosstalk-free multi-ion node for long-distance quantum networking
- Authors: P. -C. Lai, Y. Wang, J. -X. Shi, Z. -B. Cui, Z. -Q. Wang, S. Zhang, P. -Y. Liu, Z. -C. Tian, Y. -D. Sun, X. -Y. Chang, B. -X. Qi, Y. -Y. Huang, Z. -C. Zhou, Y. -K. Wu, Y. Xu, Y. -F. Pu, L. -M. Duan,
- Abstract summary: Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes.
In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits.
We report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes to realize large-scale quantum networks. In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits: one type, called the communication qubit, to establish entangling interface with telecom photons; and the other type, called the memory qubit, to store quantum information immune from photon scattering under entangling attempts. Here, we report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node based on two trapped $^{40}$Ca$^{+}$ ions. The memory qubit is encoded on a long-lived metastable level to avoid crosstalk with the communication qubit encoded in another subspace of the same ion species, and a quantum wavelength conversion module is employed to generate ion-photon entanglement over a $12\,$km fiber in a heralded style. Our work therefore constitutes an important step towards the realization of quantum repeaters and long-distance quantum networks.
Related papers
- Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network [0.0]
We demonstrate entanglement of two nuclear spin memories through 40 km spools of low-loss fiber and a 35 km long fiber loop deployed in the Boston area urban environment.
By integrating efficient bi-directional quantum frequency conversion of photonic communication qubits to telecom frequencies (1350 nm), we demonstrate entanglement of two nuclear spin memories.
arXiv Detail & Related papers (2023-10-02T16:23:08Z) - Realization of a crosstalk-avoided quantum network node with dual-type
qubits by the same ion species [0.20288584947488558]
We generate ion photon entanglement for the $S$-qubit in a typical timescale of hundreds of milliseconds.
Our work demonstrates an enabling function of the dual-type qubit scheme for scalable quantum networks.
arXiv Detail & Related papers (2023-06-26T03:38:36Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - A Quantum Network Node with Crossed Optical Fibre Cavities [0.0]
We develop a quantum network node that connects to two quantum channels.
It functions as a passive, heralded and high-fidelity quantum memory.
Our node is robust, fits naturally into larger fibre-based networks, can be scaled to more cavities, and thus provides clear perspectives for a quantum internet.
arXiv Detail & Related papers (2020-04-19T12:17:17Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.