論文の概要: A New Era in Human Factors Engineering: A Survey of the Applications and Prospects of Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2405.13426v1
- Date: Wed, 22 May 2024 08:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 00:55:07.044515
- Title: A New Era in Human Factors Engineering: A Survey of the Applications and Prospects of Large Multimodal Models
- Title(参考訳): ヒューマンファクター工学の新時代:大規模マルチモーダルモデルの適用と展望
- Authors: Li Fan, Lee Ching-Hung, Han Su, Feng Shanshan, Jiang Zhuoxuan, Sun Zhu,
- Abstract要約: 人的要因とエルゴノミクスの分野におけるLMM(Large Multimodal Models)の適用、課題、今後の展望について検討する。
具体的には, 新たな文献レビュー手法を提案し, LMMに基づく事故解析, 人体モデリング, 介入設計に関する研究を行った。
本稿は,LMMの時代における研究パラダイムの今後の動向と人的要因と人間工学研究の課題について論じる。
- 参考スコア(独自算出の注目度): 4.016749833846697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the potential applications of Large Multimodal Models (LMMs) in fields such as healthcare, social psychology, and industrial design have attracted wide research attention, providing new directions for human factors research. For instance, LMM-based smart systems have become novel research subjects of human factors studies, and LMM introduces new research paradigms and methodologies to this field. Therefore, this paper aims to explore the applications, challenges, and future prospects of LMM in the domain of human factors and ergonomics through an expert-LMM collaborated literature review. Specifically, a novel literature review method is proposed, and research studies of LMM-based accident analysis, human modelling and intervention design are introduced. Subsequently, the paper discusses future trends of the research paradigm and challenges of human factors and ergonomics studies in the era of LMMs. It is expected that this study can provide a valuable perspective and serve as a reference for integrating human factors with artificial intelligence.
- Abstract(参考訳): 近年、医療、社会心理学、産業デザインなどの分野におけるLMM(Large Multimodal Models)の潜在的な応用は、人間の因子研究の新しい方向性として広く研究の注目を集めている。
例えば、LMMベースのスマートシステムは、人間の因子研究の新しい研究課題となり、LMMはこの分野に新しい研究パラダイムと方法論を導入している。
そこで本稿は,LMMと専門家による文献レビューを通じて,人的要因と人間工学の分野におけるLMMの適用,課題,今後の展望を探求することを目的とする。
具体的には, 新たな文献レビュー手法を提案し, LMMに基づく事故解析, 人体モデリング, 介入設計に関する研究を行った。
その後,LMMの時代における研究パラダイムの今後の動向と人的要因と人間工学研究の課題について論じる。
本研究は,人的要因を人工知能と統合するための基準として,貴重な視点を提供することができると期待されている。
関連論文リスト
- Thinking beyond the anthropomorphic paradigm benefits LLM research [1.7392902719515677]
私たちは過去10年で何十万ものコンピュータサイエンス研究論文を分析しました。
大型言語モデル(LLM)研究における人類型用語の有病率と成長の実証的証拠を提示する。
これらの概念化は制限されている可能性があり、人間の類推を超えてLLMの理解と改善のための新たな道を開くと我々は主張する。
論文 参考訳(メタデータ) (2025-02-13T11:32:09Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
先進的な生成AIを駆使した大規模言語モデル(LLM)がトランスフォーメーションツールとして登場した。
本研究は, LLMを用いた定性的研究に関する文献を体系的にマッピングする。
LLMは様々な分野にまたがって利用されており、プロセスの自動化の可能性を示している。
論文 参考訳(メタデータ) (2024-11-18T21:28:00Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - 'Simulacrum of Stories': Examining Large Language Models as Qualitative Research Participants [13.693069737188859]
生産モデルに関する最近の興奮は、研究開発における人間の参加と労働の置き換えを示唆する提案の波を引き起こしている。
我々は,このパラダイムシフトの視点を理解するために,19人の定性的な研究者にインタビューを行った。
論文 参考訳(メタデータ) (2024-09-28T18:28:47Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
推論は、交渉、医療診断、刑事捜査など、様々な現実世界の環境において重要な役割を担っている。
本稿では,推論に適応する基礎モデルを提案する。
次に、基礎モデルにおける推論能力の出現の背後にある潜在的な将来方向を掘り下げる。
論文 参考訳(メタデータ) (2023-12-17T15:16:13Z) - A Bibliometric Review of Large Language Models Research from 2017 to
2023 [1.4190701053683017]
LLM(Large Language Model)は、自然言語処理(NLP)タスクにおいて優れた性能を示す言語モデルである。
本稿は,LLM研究の現在の姿を知るための研究者,実践者,政策立案者のロードマップとして機能する。
論文 参考訳(メタデータ) (2023-04-03T21:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。