On Hardware-efficient Inference in Probabilistic Circuits
- URL: http://arxiv.org/abs/2405.13639v1
- Date: Wed, 22 May 2024 13:38:47 GMT
- Title: On Hardware-efficient Inference in Probabilistic Circuits
- Authors: Lingyun Yao, Martin Trapp, Jelin Leslin, Gaurav Singh, Peng Zhang, Karthekeyan Periasamy, Martin Andraud,
- Abstract summary: This work proposes the first dedicated approximate computing framework for PCs.
We leverage Addition As Int, resulting in linear PC computation with simple hardware elements.
We provide a theoretical approximation error analysis and present an error compensation mechanism.
- Score: 5.335146727090435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Probabilistic circuits (PCs) offer a promising avenue to perform embedded reasoning under uncertainty. They support efficient and exact computation of various probabilistic inference tasks by design. Hence, hardware-efficient computation of PCs is highly interesting for edge computing applications. As computations in PCs are based on arithmetic with probability values, they are typically performed in the log domain to avoid underflow. Unfortunately, performing the log operation on hardware is costly. Hence, prior work has focused on computations in the linear domain, resulting in high resolution and energy requirements. This work proposes the first dedicated approximate computing framework for PCs that allows for low-resolution logarithm computations. We leverage Addition As Int, resulting in linear PC computation with simple hardware elements. Further, we provide a theoretical approximation error analysis and present an error compensation mechanism. Empirically, our method obtains up to 357x and 649x energy reduction on custom hardware for evidence and MAP queries respectively with little or no computational error.
Related papers
- General Coded Computing in a Probabilistic Straggler Regime [15.960546024967327]
Recently, new coded computing schemes for general computing functions, where exact computation is replaced with approximate computation, have emerged.
This paper addresses the practically important scenario in the context of general coded computing, where each server may become a straggler with a probability $p$, independently from others.
We show that the average approximation error for two existing general coded computing schemes converges to zero with the rate of at least $mathcalO(log3_frac1p(N)cdotN-3)$.
arXiv Detail & Related papers (2025-02-02T03:24:05Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
We present a novel distributed computing framework that is robust to slow compute nodes, and is capable of both approximate and exact computation of linear operations.
We propose a sequential decoding algorithm designed to handle real valued data while maintaining low computational complexity for recovery.
We demonstrate the potential applications of this framework in various contexts, such as large-scale matrix multiplication and black-box optimization.
arXiv Detail & Related papers (2023-09-01T18:02:04Z) - Efficient Computation of Counterfactual Bounds [44.4263314637532]
We compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models.
We evaluate their accuracy by providing credible intervals on the quality of the approximation.
arXiv Detail & Related papers (2023-07-17T07:59:47Z) - A full-stack view of probabilistic computing with p-bits: devices,
architectures and algorithms [0.014319921806060482]
We provide a full-stack review of probabilistic computing with p-bits.
We argue that p-bits could be used to build energy-efficient probabilistic systems.
We outline the main applications of probabilistic computers ranging from machine learning to AI.
arXiv Detail & Related papers (2023-02-13T15:36:07Z) - Bias-Scalable Near-Memory CMOS Analog Processor for Machine Learning [6.548257506132353]
Bias-scalable approximate analog computing is attractive for implementing machine learning (ML) processors with distinct power-performance specifications.
We demonstrate the implementation of bias-scalable approximate analog computing circuits using the generalization of the margin-propagation principle.
arXiv Detail & Related papers (2022-02-10T13:26:00Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
We propose Berrut Approximated Coded Computing (BACC) as an alternative approach to deal with stragglers effect.
BACC is proven to be numerically stable with low computational complexity.
In particular, BACC is used to train a deep neural network on a cluster of servers.
arXiv Detail & Related papers (2020-09-17T14:23:38Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
We propose Einsum Networks (EiNets), a novel implementation design for PCs.
At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation.
We show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation.
arXiv Detail & Related papers (2020-04-13T23:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.