論文の概要: Knowledge Graph Reasoning with Self-supervised Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.13640v1
- Date: Wed, 22 May 2024 13:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:54:52.872842
- Title: Knowledge Graph Reasoning with Self-supervised Reinforcement Learning
- Title(参考訳): 自己教師型強化学習を用いた知識グラフ推論
- Authors: Ying Ma, Owen Burns, Mingqiu Wang, Gang Li, Nan Du, Laurent El Shafey, Liqiang Wang, Izhak Shafran, Hagen Soltau,
- Abstract要約: 本稿では,RLトレーニング前の政策ネットワークを温めるための自己指導型事前学習手法を提案する。
教師付き学習段階において、エージェントはポリシーネットワークに基づいて行動を選択し、生成されたラベルから学習する。
我々のSSRLモデルは、すべてのHits@kおよび平均相互ランク(MRR)メトリクスにおいて、現在の最先端結果と一致または超えていることを示す。
- 参考スコア(独自算出の注目度): 30.359557545737747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is an effective method of finding reasoning pathways in incomplete knowledge graphs (KGs). To overcome the challenges of a large action space, a self-supervised pre-training method is proposed to warm up the policy network before the RL training stage. To alleviate the distributional mismatch issue in general self-supervised RL (SSRL), in our supervised learning (SL) stage, the agent selects actions based on the policy network and learns from generated labels; this self-generation of labels is the intuition behind the name self-supervised. With this training framework, the information density of our SL objective is increased and the agent is prevented from getting stuck with the early rewarded paths. Our self-supervised RL (SSRL) method improves the performance of RL by pairing it with the wide coverage achieved by SL during pretraining, since the breadth of the SL objective makes it infeasible to train an agent with that alone. We show that our SSRL model meets or exceeds current state-of-the-art results on all Hits@k and mean reciprocal rank (MRR) metrics on four large benchmark KG datasets. This SSRL method can be used as a plug-in for any RL architecture for a KGR task. We adopt two RL architectures, i.e., MINERVA and MultiHopKG as our baseline RL models and experimentally show that our SSRL model consistently outperforms both baselines on all of these four KG reasoning tasks. Full code for the paper available at https://github.com/owenonline/Knowledge-Graph-Reasoning-with-Self-supervised-Reinforcement-Learning.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、不完全知識グラフ(KG)における推論経路を見つける効果的な方法である。
大規模行動空間の課題を克服するため,RL訓練前の政策ネットワークを温めるために,自己指導型事前学習手法を提案する。
一般の自己教師型RL(SSRL)における分布ミスマッチ問題を緩和するために、エージェントはポリシーネットワークに基づいて行動を選択し、生成されたラベルから学習する。
このトレーニングフレームワークにより、我々のSL目標の情報密度が増加し、エージェントが早期の報奨パスで立ち往生するのを防ぐことができる。
我々の自己監督型RL (SSRL) 法は, SL目標の幅が単独でエージェントを訓練することが不可能であるため, 事前訓練中にSLが達成した範囲と組み合わせることにより, RLの性能を向上させる。
我々のSSRLモデルは、すべてのHits@kおよび4つの大規模ベンチマークKGデータセットにおける平均相互ランク(MRR)メトリクスにおいて、現在の最先端結果と一致または超えていることを示す。
このSSRLメソッドは、KGRタスクの任意のRLアーキテクチャのプラグインとして使用することができる。
我々は2つのRLアーキテクチャ、すなわちMINERVAとMultiHopKGをベースラインRLモデルとして採用し、我々のSSRLモデルはこれらの4つのKG推論タスクのベースラインを一貫して上回っていることを示す。
論文の全コードはhttps://github.com/owenonline/Knowledge-Graph-Reasoning-with-Self-supervised-Reinforcement-Learningで公開されている。
関連論文リスト
- Unsupervised-to-Online Reinforcement Learning [59.910638327123394]
Unsupervised-to-online RL (U2O RL) は、ドメイン固有の教師なしオフラインRLを非教師なしオフラインRLに置き換える。
U2O RLは、複数の下流タスクのために訓練済みのモデルを再利用できるだけでなく、より良い表現も学べる。
U2O RLは、従来のオフライン-オフラインのRLアプローチにマッチしたり、さらに性能が優れていることを実証的に実証する。
論文 参考訳(メタデータ) (2024-08-27T05:23:45Z) - SMORE: Score Models for Offline Goal-Conditioned Reinforcement Learning [33.125187822259186]
オフライン目標定義強化学習(GCRL)は、スパース報酬関数を使用して、オフラインデータセットから純粋な環境において、複数の目標を達成するための学習を行う。
我々は混合分布マッチングの新しいレンズの下でGCRLに新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-03T16:19:33Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
一般的に使われているアクションマッチングの原理は、RLエージェントの解釈よりもディープニューラルネットワーク(DNN)の説明に近いと論じられている。
本稿では,RLエージェントの主目的である報酬を,RLエージェントを解釈する本質的な目的として考察する。
我々は,Atari 2600 ゲームと,挑戦的な自動運転車シミュレータ環境である Duckietown の検証と評価を行った。
論文 参考訳(メタデータ) (2023-09-04T09:09:54Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
線形探索が教師なしRL表現の品質評価の代行的タスクであるかどうかを検討する。
本稿では,Atari100kベンチマークにおける下流RL性能と,探索タスクが強く相関していることを示す。
これにより、事前学習アルゴリズムの空間を探索し、有望な事前学習レシピを特定するためのより効率的な方法が提供される。
論文 参考訳(メタデータ) (2022-08-25T21:08:01Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
強化学習(RL)では,優れた表現が与えられると,課題の解決が容易になる。
ディープRLはこのような優れた表現を自動的に取得する必要があるが、事前の作業では、エンドツーエンドの方法での学習表現が不安定であることが多い。
比較的)表現学習法は,RLアルゴリズムとして自己にキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-06-15T14:34:15Z) - Improving Zero-shot Generalization in Offline Reinforcement Learning
using Generalized Similarity Functions [34.843526573355746]
強化学習(Reinforcement Learning, RL)エージェントは、複雑な逐次意思決定タスクの解決に広く用いられているが、訓練中に見えないシナリオに一般化することが困難である。
RLにおける一般化のためのオンラインアルゴリズムの性能は、観測間の類似性の評価が不十分なため、オフライン環境では妨げられることを示す。
本稿では, 一般化類似度関数(GSF)と呼ばれる新しい理論的動機付けフレームワークを提案する。このフレームワークは, 競合学習を用いてオフラインのRLエージェントを訓練し, 期待される将来の行動の類似性に基づいて観測を集約する。
論文 参考訳(メタデータ) (2021-11-29T15:42:54Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
高次元の観察空間上のいくつかのタスクで学んだポリシーを、トレーニング中に見えない同様のタスクに一般化する。
この課題に対する多くの有望なアプローチは、RLを2つの関数を同時に訓練するプロセスと見なしている。
本稿では,RLエージェント内で動作するクロストラジェクトリ表現学習(CTRL, Cross-Trajectory Representation Learning)を提案する。
論文 参考訳(メタデータ) (2021-06-04T00:43:10Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRLは、ニューラルネットワークのプルーニングのためのディープ強化学習ベースのアルゴリズムである。
現在の最先端の手法に匹敵する幅と精度を実現している。
論文 参考訳(メタデータ) (2020-07-09T13:06:07Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
オフラインのRL手法を評価・比較するためのRL Unpluggedというベンチマークを提案する。
RL Unpluggedにはゲームやシミュレートされたモーター制御問題を含むさまざまな領域のデータが含まれている。
本論文で提示した全タスクのデータと,全アルゴリズムをオープンソースとして公開する。
論文 参考訳(メタデータ) (2020-06-24T17:14:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。