論文の概要: Learning to Prune Deep Neural Networks via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2007.04756v1
- Date: Thu, 9 Jul 2020 13:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 03:06:20.167235
- Title: Learning to Prune Deep Neural Networks via Reinforcement Learning
- Title(参考訳): 強化学習による深層ニューラルネットワークの創出学習
- Authors: Manas Gupta, Siddharth Aravindan, Aleksandra Kalisz, Vijay
Chandrasekhar, Lin Jie
- Abstract要約: PuRLは、ニューラルネットワークのプルーニングのためのディープ強化学習ベースのアルゴリズムである。
現在の最先端の手法に匹敵する幅と精度を実現している。
- 参考スコア(独自算出の注目度): 64.85939668308966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes PuRL - a deep reinforcement learning (RL) based algorithm
for pruning neural networks. Unlike current RL based model compression
approaches where feedback is given only at the end of each episode to the
agent, PuRL provides rewards at every pruning step. This enables PuRL to
achieve sparsity and accuracy comparable to current state-of-the-art methods,
while having a much shorter training cycle. PuRL achieves more than 80%
sparsity on the ResNet-50 model while retaining a Top-1 accuracy of 75.37% on
the ImageNet dataset. Through our experiments we show that PuRL is also able to
sparsify already efficient architectures like MobileNet-V2. In addition to
performance characterisation experiments, we also provide a discussion and
analysis of the various RL design choices that went into the tuning of the
Markov Decision Process underlying PuRL. Lastly, we point out that PuRL is
simple to use and can be easily adapted for various architectures.
- Abstract(参考訳): 本稿では,ニューラルネットワークの深部強化学習(RL)に基づくアルゴリズムであるPuRLを提案する。
現在のRLベースのモデル圧縮アプローチとは異なり、フィードバックは各エピソードの最後にのみエージェントに与えられる。
これにより、PuRLは、より短いトレーニングサイクルを持ちながら、現在の最先端のメソッドに匹敵する幅と精度を達成することができる。
PuRLはResNet-50モデルで80%以上の間隔を実現し、ImageNetデータセットでトップ1の精度は75.37%である。
実験を通じて、PuRLはMobileNet-V2のような既に効率的なアーキテクチャをスパース化できることを示した。
性能特性化実験に加えて,pullの基盤となるマルコフ決定プロセスのチューニングを行った様々なrl設計に関する議論と分析も行なっている。
最後に、PuRLは簡単に使用でき、様々なアーキテクチャに容易に適応できると指摘する。
関連論文リスト
- Knowledge Graph Reasoning with Self-supervised Reinforcement Learning [30.359557545737747]
本稿では,RLトレーニング前の政策ネットワークを温めるための自己指導型事前学習手法を提案する。
教師付き学習段階において、エージェントはポリシーネットワークに基づいて行動を選択し、生成されたラベルから学習する。
我々のSSRLモデルは、すべてのHits@kおよび平均相互ランク(MRR)メトリクスにおいて、現在の最先端結果と一致または超えていることを示す。
論文 参考訳(メタデータ) (2024-05-22T13:39:33Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning [73.80728148866906]
準メトリック強化学習(QRL)は、準メトリックモデルを用いて最適な値関数を学習する新しいRL法である。
オフラインおよびオンラインの目標達成ベンチマークでは、QRLはサンプル効率とパフォーマンスが改善されている。
論文 参考訳(メタデータ) (2023-04-03T17:59:58Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
線形探索が教師なしRL表現の品質評価の代行的タスクであるかどうかを検討する。
本稿では,Atari100kベンチマークにおける下流RL性能と,探索タスクが強く相関していることを示す。
これにより、事前学習アルゴリズムの空間を探索し、有望な事前学習レシピを特定するためのより効率的な方法が提供される。
論文 参考訳(メタデータ) (2022-08-25T21:08:01Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
強化学習(RL)では,優れた表現が与えられると,課題の解決が容易になる。
ディープRLはこのような優れた表現を自動的に取得する必要があるが、事前の作業では、エンドツーエンドの方法での学習表現が不安定であることが多い。
比較的)表現学習法は,RLアルゴリズムとして自己にキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-06-15T14:34:15Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な現実世界の問題を解決するための強力なフレームワークである。
この問題に対処するひとつの方法は、必要なパラメータだけを残したニューラルネットワークをプルークすることです。
我々は,RLと単発プルーニングのギャップを埋め,オフラインRLに対する一般的なプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-12-31T18:10:02Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。