論文の概要: Advancing Spiking Neural Networks towards Multiscale Spatiotemporal Interaction Learning
- arxiv url: http://arxiv.org/abs/2405.13672v1
- Date: Wed, 22 May 2024 14:16:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:54:52.783658
- Title: Advancing Spiking Neural Networks towards Multiscale Spatiotemporal Interaction Learning
- Title(参考訳): スパイクニューラルネットワークのマルチスケール時空間相互作用学習への応用
- Authors: Yimeng Shan, Malu Zhang, Rui-jie Zhu, Xuerui Qiu, Jason K. Eshraghian, Haicheng Qu,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ニューラルネットワーク(ANN)のエネルギー効率の良い代替品として機能する
我々は、マルチスケールの時間的相互作用情報をキャプチャするスパイキング・マルチスケール・アテンション(SMA)モジュールを設計した。
われわれのアプローチは、主流のニューラルネットワークで最先端の結果を得た。
- 参考スコア(独自算出の注目度): 10.702093960098106
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in neuroscience research have propelled the development of Spiking Neural Networks (SNNs), which not only have the potential to further advance neuroscience research but also serve as an energy-efficient alternative to Artificial Neural Networks (ANNs) due to their spike-driven characteristics. However, previous studies often neglected the multiscale information and its spatiotemporal correlation between event data, leading SNN models to approximate each frame of input events as static images. We hypothesize that this oversimplification significantly contributes to the performance gap between SNNs and traditional ANNs. To address this issue, we have designed a Spiking Multiscale Attention (SMA) module that captures multiscale spatiotemporal interaction information. Furthermore, we developed a regularization method named Attention ZoneOut (AZO), which utilizes spatiotemporal attention weights to reduce the model's generalization error through pseudo-ensemble training. Our approach has achieved state-of-the-art results on mainstream neural morphology datasets. Additionally, we have reached a performance of 77.1% on the Imagenet-1K dataset using a 104-layer ResNet architecture enhanced with SMA and AZO. This achievement confirms the state-of-the-art performance of SNNs with non-transformer architectures and underscores the effectiveness of our method in bridging the performance gap between SNN models and traditional ANN models.
- Abstract(参考訳): 近年の神経科学研究の進展により、スパイキングニューラルネットワーク(SNN)の開発が促進され、神経科学研究をさらに進展させる可能性だけでなく、スパイク駆動特性により、ニューラルネットワーク(ANN)に代わるエネルギー効率の高い代替品として機能する。
しかし、過去の研究では、イベントデータ間のマルチスケール情報とその時空間相関を無視することが多かったため、SNNモデルは入力イベントの各フレームを静的な画像として近似する。
この過度な単純化は、SNNと従来のANNのパフォーマンスギャップに大きく寄与する、という仮説を立てる。
この問題に対処するために,マルチスケールの時空間相互作用情報をキャプチャするスパイキング・マルチスケール・アテンション(SMA)モジュールを設計した。
さらに,アテンションゾーンアウト(AZO)と呼ばれる正規化手法を開発し,時空間の注意重みを利用して擬似アンサンブル学習によるモデルの一般化誤差を低減する。
我々のアプローチは、主流のニューラルモルフォロジーデータセットの最先端の結果を得た。
さらに,SMAおよびAZOで拡張された104層ResNetアーキテクチャを用いて,Imagenet-1Kデータセット上で77.1%の性能を達成した。
この成果は、非トランスフォーマーアーキテクチャを用いたSNNの最先端性能を確認し、従来のANNモデルとSNNモデルのパフォーマンスギャップを埋める上で、本手法の有効性を裏付けるものである。
関連論文リスト
- Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
高品質なベンチマークデータセットは、ニューラルネットワーク(SNN)の発展に非常に重要である
しかし、SNNベースのクロスモーダル融合はまだ未定である。
本研究では,SNNの時間的特性をよりよく活用できるニューロモルフィックデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-21T06:59:04Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
スパイキングニューラルネットワーク(SNN)は、人工ニューラルネットワーク(ANN)の代替として有望なエネルギー効率を提供する
本稿では,より深いSNNを高い性能で訓練するための理論と手法を要約する新しい視点を提供する。
論文 参考訳(メタデータ) (2024-05-06T09:58:54Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。