論文の概要: Mutatis Mutandis: Revisiting the Comparator in Discrimination Testing
- arxiv url: http://arxiv.org/abs/2405.13693v2
- Date: Tue, 01 Oct 2024 08:40:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:32:03.500518
- Title: Mutatis Mutandis: Revisiting the Comparator in Discrimination Testing
- Title(参考訳): Mutatis Mutandis: 差別テストにおける比較器の再検討
- Authors: Jose M. Alvarez, Salvatore Ruggieri,
- Abstract要約: 差別のための試験は、コンパレータ(compparator)として知られるプロファイルを導出する。
差別を確立するための重要な側面は証拠であり、しばしば不服従者/比較者ペアを実装する差別テストツールを介して得られる。
コンパレータを導出する因果モデリングの性質を論じ,コンパレータに2種類の分類を導入する。
- 参考スコア(独自算出の注目度): 22.596961524387233
- License:
- Abstract: Testing for discrimination consists of deriving a profile, known as the comparator, similar to the profile making the discrimination claim, known as the complainant, and comparing the outcomes of these two profiles. An important aspect for establishing discrimination is evidence, often obtained via discrimination testing tools that implement the complainant-comparator pair. In this work, we revisit the role of the comparator in discrimination testing. We argue for the causal modeling nature of deriving the comparator, and introduce a two-kinds classification for the comparator: the ceteris paribus (CP), and mutatis mutandis (MM) comparators. The CP comparator is the standard one among discrimination testing, representing an idealized comparison as it aims for having a complainant-comparator pair that only differs on membership to the protected attribute. As an alternative to it, we define the MM comparator, which requires that the comparator represents what would have been of the complainant without the effects of the protected attribute on the non-protected attributes. The complainant-comparator pair, in that case, may also be dissimilar in terms of all attributes. We illustrate these two comparators and their impact on discrimination testing using a real illustrative example. Importantly, we position generative models and, overall, machine learning methods as useful tools for constructing the MM comparator and, in turn, achieving more complex and realistic comparisons when testing for discrimination.
- Abstract(参考訳): 差別のための試験は、コンパレータ(compparator)として知られるプロファイルを導出する。
差別を確立するための重要な側面は証拠であり、しばしば不服従者/比較者ペアを実装する差別テストツールを介して得られる。
本研究では,差別テストにおけるコンパレータの役割を再考する。
我々は,コンパレータを導出する因果モデリングの性質を論じ,コンパレータにセテリス・パリバス(CP)とムタティス・ムタンディス(MM)コンパレータ(MM)コンパレータという2種類の分類を導入する。
CPコンパレータは、識別テストの標準であり、保護属性のメンバシップによってのみ異なる不平のコンパレータ対を持つことを目的とした理想的な比較である。
その代替としてMMコンパレータを定義し,非保護属性に対する保護属性の影響を伴わずに,このコンパレータが不平を表現しなくてはならない。
この場合、不平-比較対は、すべての属性に関して異同することもある。
実例を用いて,これら2つのコンパレータと識別テストへの影響について説明する。
重要なことは、生成モデルと全体的な機械学習手法を、MMコンパレータを構築するための有用なツールとして位置づけ、その上で、識別のためのテストにおいてより複雑で現実的な比較を実現することである。
関連論文リスト
- Compare without Despair: Reliable Preference Evaluation with Generation Separability [20.50638483427141]
テストインスタンスがペアの選好評価にどの程度適しているかを推定する尺度であるセパビリティ(Separability)を導入する。
候補テストインスタンスでは、セパビリティは1組のモデルから複数の世代をサンプリングし、2つの世代がどの程度区別可能であるかを測定する。
実験により、分離性が高いインスタンスは、人間と自動レーダの両方からより一貫した選好格付けが得られることが示された。
論文 参考訳(メタデータ) (2024-07-02T01:37:56Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
コントラディション検索(Contradiction Search)とは、クエリの内容に明示的に異を唱える文書を識別し、抽出することである。
類似性探索やクロスエンコーダモデルといった既存の手法には、大きな制限がある。
文間の微妙で矛盾したニュアンスを保存するために特別に訓練された文埋め込みを利用するSparseCLを導入する。
論文 参考訳(メタデータ) (2024-06-15T21:57:03Z) - Counterfactual Situation Testing: Uncovering Discrimination under
Fairness given the Difference [26.695316585522527]
本稿では,分類器の識別を行う因果データマイニングフレームワークであるCSTについて述べる。
CSTは「モデルの結果が、個人、または不平が、異なる保護された状態であったとしたら、どんな結果だったのか?
論文 参考訳(メタデータ) (2023-02-23T11:41:21Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
本稿では,分類ヘッドを損なうために,UnderlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN)損失を原則として提案する。
論文 参考訳(メタデータ) (2022-10-12T23:39:28Z) - Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation [55.27563366506407]
非教師付きドメイン適応(UDA)のための識別器なし対向学習ネットワーク(DALN)を導入する。
DALNは、統一された目的によって明確なドメインアライメントとカテゴリの区別を達成する。
DALNは、さまざまなパブリックデータセット上の既存の最先端(SOTA)メソッドと比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-04-08T04:40:18Z) - Instance Similarity Learning for Unsupervised Feature Representation [83.31011038813459]
教師なし特徴表現のための例類似性学習(ISL)手法を提案する。
我々はGAN(Generative Adversarial Networks)を用いて、基礎となる特徴多様体をマイニングする。
画像分類実験は, 最先端手法と比較して, 提案手法の優位性を示した。
論文 参考訳(メタデータ) (2021-08-05T16:42:06Z) - One-vs.-One Mitigation of Intersectional Bias: A General Method to
Extend Fairness-Aware Binary Classification [0.48733623015338234]
1-vs.ワン・マイティゲーション(英: One-vs. One Mitigation)は、二項分類のためのフェアネス認識機械学習と、センシティブ属性に関連する各サブグループの比較プロセスである。
本手法は,すべての設定において従来の手法よりも交叉バイアスを緩和する。
論文 参考訳(メタデータ) (2020-10-26T11:35:39Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
本稿では,ペアワイズ比較データとランキングデータのための2サンプル試験を設計する。
私たちのテストでは、基本的に分布に関する仮定は必要ありません。
実世界のペアワイズ比較データに2サンプルテストを適用することで、人によって提供される評価とランキングは、実際は異なる分散である、と結論付ける。
論文 参考訳(メタデータ) (2020-06-21T20:51:09Z) - The Benefits of Pairwise Discriminators for Adversarial Training [1.7188280334580193]
ペアワイズ判別器を活用することで目的のファミリーを導入し、生成元のみを収束させる必要があることを示す。
我々は局所収束のための十分な条件を提供し、判別器と生成器の選択を導く能力バランスを特徴付ける。
提案手法により,より高解像度な画像を生成することができることを示す。
論文 参考訳(メタデータ) (2020-02-20T08:43:59Z) - Discrimination of POVMs with rank-one effects [62.997667081978825]
この研究は、ランクワン効果を持つ正の作用素値測度を識別する問題に関する洞察を与える。
パラレルとアダプティブの2つの予測手法を比較した。
この適応型スキームを見つけるための明示的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-02-13T11:34:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。