論文の概要: Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior
- arxiv url: http://arxiv.org/abs/2405.13699v1
- Date: Wed, 22 May 2024 14:43:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:45:08.032719
- Title: Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior
- Title(参考訳): 近位部悪性腫瘍の非確実性評価 : 近位部悪性腫瘍の1例
- Authors: Lorenzo Perini, Maja Rudolph, Sabrina Schmedding, Chen Qiu,
- Abstract要約: 異常検出は、期待通りに振る舞わない例を特定するタスクである。
合成異常は品質が悪いかもしれない。
補助異常の品質を定量化する既存の方法はない。
- 参考スコア(独自算出の注目度): 17.499560292835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is the task of identifying examples that do not behave as expected. Because anomalies are rare and unexpected events, collecting real anomalous examples is often challenging in several applications. In addition, learning an anomaly detector with limited (or no) anomalies often yields poor prediction performance. One option is to employ auxiliary synthetic anomalies to improve the model training. However, synthetic anomalies may be of poor quality: anomalies that are unrealistic or indistinguishable from normal samples may deteriorate the detector's performance. Unfortunately, no existing methods quantify the quality of auxiliary anomalies. We fill in this gap and propose the expected anomaly posterior (EAP), an uncertainty-based score function that measures the quality of auxiliary anomalies by quantifying the total uncertainty of an anomaly detector. Experimentally on 40 benchmark datasets of images and tabular data, we show that EAP outperforms 12 adapted data quality estimators in the majority of cases.
- Abstract(参考訳): 異常検出は、期待通りに振る舞わない例を特定するタスクである。
異常はまれで予期せぬ出来事であるため、実際の異常な事例を収集することはいくつかのアプリケーションでしばしば困難である。
さらに、限られた(またはノー)異常のある異常検知器を学習すると、予測性能が低下することがある。
1つの選択肢は、モデルトレーニングを改善するために補助的な合成異常を使用することである。
しかし、合成異常は品質が劣る可能性があり、非現実的または通常のサンプルと区別できない異常は検出器の性能を低下させる可能性がある。
残念ながら、補助異常の品質を定量化する方法は存在しない。
このギャップを埋めて,異常検出器の総不確実性を定量化して補助異常の質を測定する不確実性に基づくスコア関数である予測異常後部(EAP)を提案する。
画像と表データの40のベンチマークデータセットを用いて実験したところ、EAPは、ほとんどのケースにおいて、12の適応データ品質推定器より優れていることがわかった。
関連論文リスト
- AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs [15.399369134281775]
異常検出の目標は、正常なサンプルから異常なサンプルを特定することである。
本稿では,少数の異常がトレーニング段階で利用可能であることが想定されているが,これらは複数の異常タイプからのみ収集されていると推定されている。
本稿では,通常のサンプルをモデル化するだけでなく,収集した異常に対して低密度値の割り当てを保証できる確率分布の学習を提案する。
論文 参考訳(メタデータ) (2022-04-28T08:12:49Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。