論文の概要: Optimizing Lymphocyte Detection in Breast Cancer Whole Slide Imaging through Data-Centric Strategies
- arxiv url: http://arxiv.org/abs/2405.13710v1
- Date: Wed, 22 May 2024 14:59:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:45:08.022730
- Title: Optimizing Lymphocyte Detection in Breast Cancer Whole Slide Imaging through Data-Centric Strategies
- Title(参考訳): Data-Centric Strategies を用いた乳癌全スライド画像におけるリンパ球検出の最適化
- Authors: Amine Marzouki, Zhuxian Guo, Qinghe Zeng, Camille Kurtz, Nicolas Loménie,
- Abstract要約: 市販のYOLOv5モデルを用いてリンパ球検出性能の高いデータ中心最適化パイプラインを開発した。
本研究は,本手法が優れたリンパ球検出能を誘導する乳癌の文脈において,本手法の関心を示すものである。
- 参考スコア(独自算出の注目度): 0.2796197251957244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient and precise quantification of lymphocytes in histopathology slides is imperative for the characterization of the tumor microenvironment and immunotherapy response insights. We developed a data-centric optimization pipeline that attain great lymphocyte detection performance using an off-the-shelf YOLOv5 model, without any architectural modifications. Our contribution that rely on strategic dataset augmentation strategies, includes novel biological upsampling and custom visual cohesion transformations tailored to the unique properties of tissue imagery, and enables to dramatically improve model performances. Our optimization reveals a pivotal realization: given intensive customization, standard computational pathology models can achieve high-capability biomarker development, without increasing the architectural complexity. We showcase the interest of this approach in the context of breast cancer where our strategies lead to good lymphocyte detection performances, echoing a broadly impactful paradigm shift. Furthermore, our data curation techniques enable crucial histological analysis benchmarks, highlighting improved generalizable potential.
- Abstract(参考訳): 病理組織スライド中のリンパ球の効率的かつ正確な定量化は、腫瘍微小環境の解明と免疫療法反応の洞察に不可欠である。
そこで我々は,市販のYOLOv5モデルを用いたリンパ球検出性能の優れたデータ中心最適化パイプラインを開発した。
我々の貢献は、戦略的データセット増強戦略に依存しており、新しい生物学的アップサンプリングや、組織像のユニークな性質に合わせた独自の視覚的結束変換が含まれており、モデルの性能を劇的に改善することができる。
集中的なカスタマイズを前提として、標準的な計算病理モデルは、アーキテクチャの複雑さを増大させることなく、高機能なバイオマーカー開発を実現することができる。
この手法の関心は乳がんの文脈で示され、我々の戦略が優れたリンパ球検出性能に導いており、幅広い影響のあるパラダイムシフトを反映している。
さらに、我々のデータキュレーション技術は、重要な組織学的分析ベンチマークを可能にし、一般化可能なポテンシャルの向上を強調している。
関連論文リスト
- Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization [0.13108652488669734]
病理組織像における領域一般化のための新しい生成法を提案する。
本手法では,画像パッチの特徴を動的に抽出するために,生成型自己教師型視覚変換器を用いる。
2つの異なる病理組織学的データセットを用いて行った実験は,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-07-03T08:20:27Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
本稿では,脳腫瘍進展部分微分方程式(PDE)モデルをディープラーニングを用いた正規化として設計する手法を提案する。
本手法では, 腫瘍増殖PDEモデルを直接セグメンテーションプロセスに導入し, 精度とロバスト性を向上する。
我々は、BraTS 2023データセットの広範な実験を通じて、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T07:21:46Z) - Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques [3.495246564946556]
本稿では,自動画像強調選択(RandAugment)と検索戦略(Tree-based Parzen Estimator)を組み合わせた手法を提案する。
乳がん組織学的スライスに対するアプローチを実験的に検証し,がん細胞の分節化に着目した。
以上の結果から,提案手法は組織スライドの変動に対してより回復力のあるセグメンテーションモデルに導かれることが示唆された。
論文 参考訳(メタデータ) (2023-11-18T13:08:09Z) - Histopathologic Cancer Detection [0.0]
この作業では、PatchCamelyonベンチマークデータセットを使用して、モデルをマルチレイヤのパーセプトロンと畳み込みモデルでトレーニングし、精度の高いリコール、F1スコア、精度、AUCスコアでモデルのパフォーマンスを観察する。
また,データ拡張を伴うResNet50とInceptionNetモデルを導入し,ResNet50が最先端モデルに勝てることを示す。
論文 参考訳(メタデータ) (2023-11-13T19:51:46Z) - LLM-driven Multimodal Target Volume Contouring in Radiation Oncology [46.23891509553877]
大規模言語モデル(LLM)は、テキスト情報と画像の統合を容易にする。
LLM駆動型マルチモーダルAI,すなわちLLMSegを提案する。
提案モデルでは,従来のユニモーダルAIモデルと比較して,性能が著しく向上していることが実証された。
論文 参考訳(メタデータ) (2023-11-03T13:38:42Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - HistoPerm: A Permutation-Based View Generation Approach for Improving
Histopathologic Feature Representation Learning [33.1098457952173]
HistoPermは共同埋め込みアーキテクチャを用いた表現学習のためのビュー生成手法である。
HistoPermは、全スライディングのヒストロジー画像から抽出したパッチの増分ビューを置換し、分類性能を向上させる。
以上の結果から,HistoPermは,精度,F1スコア,AUCの点で,パッチレベルとスライドレベルの分類性能を一貫して向上させることがわかった。
論文 参考訳(メタデータ) (2022-09-13T17:35:08Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
セマンティックイメージセグメンテーションに関する最初の研究を行い、textitSmartAugment と textitSmartSamplingAugment の2つの新しいアプローチを紹介した。
SmartAugmentはベイジアン最適化を使用して、拡張戦略の豊富なスペースを探索し、私たちが考慮しているすべてのセマンティックセグメンテーションタスクにおいて、新しい最先端のパフォーマンスを達成する。
SmartSamplingAugmentは、固定的な拡張戦略を備えたシンプルなパラメータフリーのアプローチで、既存のリソース集約型アプローチとパフォーマンスを競い合い、安価な最先端データ拡張手法を上回っている。
論文 参考訳(メタデータ) (2021-10-31T13:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。