論文の概要: Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2407.19284v2
- Date: Tue, 1 Oct 2024 16:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:38:53.644666
- Title: Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation
- Title(参考訳): 膵腫瘍分節増強のための合成データの最適化
- Authors: Linkai Peng, Zheyuan Zhang, Gorkem Durak, Frank H. Miller, Alpay Medetalibeyoglu, Michael B. Wallace, Ulas Bagci,
- Abstract要約: 本研究は膵腫瘍分節に対する既存の生成AIフレームワークの限界を批判的に評価する。
本研究は,合成テクストサイズとテクスト境界定義精度がモデル性能に与える影響について,一連の実験を行った。
以上の結果より,(1)合成腫瘍サイズの組み合わせを戦略的に選択することが最適セグメンテーションの結果にとって重要であること,(2)正確な境界を持つ合成腫瘍の生成がモデル精度を著しく向上すること,などが示唆された。
- 参考スコア(独自算出の注目度): 1.6321136843816972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pancreatic cancer remains one of the leading causes of cancer-related mortality worldwide. Precise segmentation of pancreatic tumors from medical images is a bottleneck for effective clinical decision-making. However, achieving a high accuracy is often limited by the small size and availability of real patient data for training deep learning models. Recent approaches have employed synthetic data generation to augment training datasets. While promising, these methods may not yet meet the performance benchmarks required for real-world clinical use. This study critically evaluates the limitations of existing generative-AI based frameworks for pancreatic tumor segmentation. We conduct a series of experiments to investigate the impact of synthetic \textit{tumor size} and \textit{boundary definition} precision on model performance. Our findings demonstrate that: (1) strategically selecting a combination of synthetic tumor sizes is crucial for optimal segmentation outcomes, and (2) generating synthetic tumors with precise boundaries significantly improves model accuracy. These insights highlight the importance of utilizing refined synthetic data augmentation for enhancing the clinical utility of segmentation models in pancreatic cancer decision making including diagnosis, prognosis, and treatment plans. Our code will be available at https://github.com/lkpengcs/SynTumorAnalyzer.
- Abstract(参考訳): 膵臓がんは、世界中でがん関連死亡の原因の1つとなっている。
医用画像からの膵腫瘍の精密分画は, 臨床的に有効な意思決定のボトルネックとなる。
しかし、深層学習モデルの訓練において、実際の患者データの小型化と可用性によって、高い精度を達成することは、しばしば制限される。
近年のアプローチでは、トレーニングデータセットの強化に合成データ生成を採用している。
有望ではあるが、これらの手法は実際の臨床使用に必要なパフォーマンスベンチマークをまだ満たしていないかもしれない。
本研究は膵腫瘍分節に対する既存の生成AIフレームワークの限界を批判的に評価する。
モデル性能に対する合成 \textit{tumor size} と \textit{boundary definition} の精度の影響を調べるための一連の実験を行った。
以上の結果より,(1)合成腫瘍サイズの組み合わせを戦略的に選択することが最適セグメンテーションの結果にとって重要であること,(2)正確な境界を持つ合成腫瘍の生成がモデル精度を著しく向上すること,などが示唆された。
これらの知見は、診断、予後、治療計画を含む膵癌決定におけるセグメンテーションモデルの臨床的有用性を高めるために、改良された合成データ拡張を活用することの重要性を強調している。
私たちのコードはhttps://github.com/lkpengcs/SynTumorAnalyzer.comで利用可能です。
関連論文リスト
- Cancer-Net SCa-Synth: An Open Access Synthetically Generated 2D Skin Lesion Dataset for Skin Cancer Classification [65.83291923029985]
アメリカ合衆国では、皮膚がんが最も一般的に診断されるがんと位置づけられており、公衆衛生上の問題となっている。
データセットのキュレーションとディープラーニングの進歩により、皮膚がんの迅速かつ正確な検出が期待できる。
Cancer-Net SCa- Synthは、皮膚がん分類のためのオープンアクセス合成された2D皮膚病変データセットである。
論文 参考訳(メタデータ) (2024-11-08T02:04:21Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
胃癌と大腸腺癌は広範囲で難治性の悪性腫瘍である。
医療コミュニティは、患者の予後を推定するための重要な指標として、5年間の生存率を受け入れている。
本研究は胃癌および大腸癌患者の生存予測モデルを改善するための先駆的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-11T21:47:13Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
本稿では,脳腫瘍進展部分微分方程式(PDE)モデルをディープラーニングを用いた正規化として設計する手法を提案する。
本手法では,特にデータ共有シナリオにおいて,腫瘍増殖PDEモデルをセグメント化プロセスに直接導入し,精度とロバスト性を向上させる。
我々は、BraTS 2023データセットの広範な実験を通じて、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T07:21:46Z) - Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques [3.495246564946556]
本稿では,自動画像強調選択(RandAugment)と検索戦略(Tree-based Parzen Estimator)を組み合わせた手法を提案する。
乳がん組織学的スライスに対するアプローチを実験的に検証し,がん細胞の分節化に着目した。
以上の結果から,提案手法は組織スライドの変動に対してより回復力のあるセグメンテーションモデルに導かれることが示唆された。
論文 参考訳(メタデータ) (2023-11-18T13:08:09Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。