Towards Explainable Test Case Prioritisation with Learning-to-Rank Models
- URL: http://arxiv.org/abs/2405.13786v1
- Date: Wed, 22 May 2024 16:11:45 GMT
- Title: Towards Explainable Test Case Prioritisation with Learning-to-Rank Models
- Authors: Aurora Ramírez, Mario Berrios, José Raúl Romero, Robert Feldt,
- Abstract summary: Test case prioritisation ( TCP) is a critical task in regression testing to ensure quality as software evolves.
We present and discuss scenarios that require different explanations and how the particularities of TCP could influence them.
- Score: 6.289767078502329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Test case prioritisation (TCP) is a critical task in regression testing to ensure quality as software evolves. Machine learning has become a common way to achieve it. In particular, learning-to-rank (LTR) algorithms provide an effective method of ordering and prioritising test cases. However, their use poses a challenge in terms of explainability, both globally at the model level and locally for particular results. Here, we present and discuss scenarios that require different explanations and how the particularities of TCP (multiple builds over time, test case and test suite variations, etc.) could influence them. We include a preliminary experiment to analyse the similarity of explanations, showing that they do not only vary depending on test case-specific predictions, but also on the relative ranks.
Related papers
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - Deep anytime-valid hypothesis testing [29.273915933729057]
We propose a general framework for constructing powerful, sequential hypothesis tests for nonparametric testing problems.
We develop a principled approach of leveraging the representation capability of machine learning models within the testing-by-betting framework.
Empirical results on synthetic and real-world datasets demonstrate that tests instantiated using our general framework are competitive against specialized baselines.
arXiv Detail & Related papers (2023-10-30T09:46:19Z) - Mind the instructions: a holistic evaluation of consistency and
interactions in prompt-based learning [14.569770617709073]
We present a detailed analysis of which design choices cause instabilities and inconsistencies in task predictions.
We show how spurious correlations between input distributions and labels form only a minor problem for prompted models.
We statistically analyse the results to show which factors are the most influential, interactive or stable.
arXiv Detail & Related papers (2023-10-20T13:25:24Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - Differential testing for machine learning: an analysis for
classification algorithms beyond deep learning [7.081604594416339]
We conduct a case study using Scikit-learn, Weka, Spark MLlib, and Caret.
We identify the potential of differential testing by considering which algorithms are available in multiple frameworks.
The feasibility seems limited because often it is not possible to determine configurations that are the same in other frameworks.
arXiv Detail & Related papers (2022-07-25T08:27:01Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning
Tasks [14.547623982073475]
Deep learning systems are notoriously difficult to test and debug.
It is essential to conduct test selection and label only those selected "high quality" bug-revealing test inputs for test cost reduction.
We propose a novel test prioritization technique that brings order into the unlabeled test instances according to their bug-revealing capabilities, namely TestRank.
arXiv Detail & Related papers (2021-05-21T03:41:10Z) - An Empirical Comparison of Instance Attribution Methods for NLP [62.63504976810927]
We evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples.
We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods.
arXiv Detail & Related papers (2021-04-09T01:03:17Z) - What is the Vocabulary of Flaky Tests? An Extended Replication [0.0]
We conduct an empirical study to assess the use of code identifiers to predict test flakiness.
We validated the performance of trained models using datasets with other flaky tests and from different projects.
arXiv Detail & Related papers (2021-03-23T16:42:22Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.