論文の概要: Dense Connector for MLLMs
- arxiv url: http://arxiv.org/abs/2405.13800v1
- Date: Wed, 22 May 2024 16:25:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:15:30.218207
- Title: Dense Connector for MLLMs
- Title(参考訳): MLLM用デンスコネクタ
- Authors: Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang,
- Abstract要約: Dense Connector - 既存のMLLMを大幅に強化するプラグイン・アンド・プレイ型ヴィジュアル言語コネクタ。
画像のみを訓練したわれわれのモデルは、ビデオ理解でも際立ったゼロショットの能力を誇示している。
- 参考スコア(独自算出の注目度): 89.50595155217108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Do we fully leverage the potential of visual encoder in Multimodal Large Language Models (MLLMs)? The recent outstanding performance of MLLMs in multimodal understanding has garnered broad attention from both academia and industry. In the current MLLM rat race, the focus seems to be predominantly on the linguistic side. We witness the rise of larger and higher-quality instruction datasets, as well as the involvement of larger-sized LLMs. Yet, scant attention has been directed towards the visual signals utilized by MLLMs, often assumed to be the final high-level features extracted by a frozen visual encoder. In this paper, we introduce the Dense Connector - a simple, effective, and plug-and-play vision-language connector that significantly enhances existing MLLMs by leveraging multi-layer visual features, with minimal additional computational overhead. Furthermore, our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well. Experimental results across various vision encoders, image resolutions, training dataset scales, varying sizes of LLMs (2.7B->70B), and diverse architectures of MLLMs (e.g., LLaVA and Mini-Gemini) validate the versatility and scalability of our approach, achieving state-of-the-art performance on across 19 image and video benchmarks. We hope that this work will provide valuable experience and serve as a basic module for future MLLM development.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)におけるビジュアルエンコーダの可能性を完全に活用できるだろうか?
マルチモーダル理解におけるMLLMの最近の卓越した業績は、学術と産業の両方から広く注目を集めている。
現在のMLLMラットレースでは、主に言語的な側面に焦点が当てられているようだ。
我々は,大規模かつ高品質な命令データセットの出現と,大規模LLMの関与を目撃する。
しかし、スキャンされた注意はMLLMが利用する視覚信号に向けられ、しばしば凍結した視覚エンコーダによって抽出される最後の高次特徴であると考えられている。
本稿では,Dense Connectorについて述べる。Dense Connectorは,マルチレイヤの視覚的特徴を活用することで既存のMLLMを大幅に拡張し,計算オーバーヘッドを最小限に抑える,シンプルで効果的でプラグアンドプレイの視覚言語コネクタである。
さらに,画像のみを訓練した本モデルでは,映像理解にも優れたゼロショット機能を備えている。
様々な視覚エンコーダ、画像解像度、トレーニングデータセットスケール、LLMのさまざまなサイズ(2.7B->70B)、MLLMの多様なアーキテクチャ(例:LLaVA、Mini-Gemini)にわたる実験結果は、我々のアプローチの汎用性とスケーラビリティを検証し、19のイメージおよびビデオベンチマークで最先端のパフォーマンスを達成する。
この作業が貴重な経験を提供し、将来のMLLM開発のための基本的なモジュールとして機能することを願っています。
関連論文リスト
- Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - LM4LV: A Frozen Large Language Model for Low-level Vision Tasks [25.3601306724822]
$textbfLM4LV$は、大規模な言語モデルで、マルチモーダルデータや事前データなしで、さまざまな低レベルの視覚タスクを解決できるフレームワークである。
これは低レベルのビジョンにおけるLLMの強い可能性を示し、MLLMと低レベルのビジョンタスクの間のギャップを埋める。
論文 参考訳(メタデータ) (2024-05-24T17:25:00Z) - From Image to Video, what do we need in multimodal LLMs? [19.85928004619801]
MLLM(Multimodal Large Language Models)は、マルチモーダル情報を理解する上で重要な機能を示す。
画像LLMからの映像LLMのための資源効率の高い開発パイプラインRED-VILLMを提案する。
我々のアプローチは、よりコスト効率が高くスケーラブルなマルチモーダルモデルの進歩の可能性を強調します。
論文 参考訳(メタデータ) (2024-04-18T02:43:37Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
言語・マルチモーダルタスクにおける大規模言語モデル(LLM)の顕著な機能を考えると,近年の映像理解の進歩について概観する。
Vid-LLMの創発的能力は驚くほど進歩しており、特にオープンな多粒性推論能力がある。
本調査は,Vid-LLMのタスク,データセット,ベンチマーク,評価方法論に関する総合的研究である。
論文 参考訳(メタデータ) (2023-12-29T01:56:17Z) - OneLLM: One Framework to Align All Modalities with Language [90.14915575477197]
統一フレームワークを用いて8つのモーダルを言語に整合させるMLLMであるOneLLMを提案する。
OneLLMは25の多様なベンチマークで評価され、マルチモーダルキャプション、質問応答、推論などのタスクを含む。
論文 参考訳(メタデータ) (2023-12-06T18:59:19Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
MLLM(Multimodal Large Language Models)は、マルチモーダル信号の知覚と理解が可能なLLMを提供する。
既存のMLLMの多くは、大まかに整列された画像テキストペアで事前訓練された視覚エンコーダを採用しており、視覚知識の抽出と推論が不十分である。
本稿では,2段階の視覚的知識を注入することによってMLLMを増強する,デュアルレベルvIsual knedgeOwl eNhanced Multimodal Large Language Model (LION)を提案する。
論文 参考訳(メタデータ) (2023-11-20T15:56:44Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。