論文の概要: LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2410.16236v2
- Date: Fri, 25 Oct 2024 06:19:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 09:36:57.613771
- Title: LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
- Title(参考訳): LLaVA-KD:マルチモーダル大言語モデルの拡張フレームワーク
- Authors: Yuxuan Cai, Jiangning Zhang, Haoyang He, Xinwei He, Ao Tong, Zhenye Gan, Chengjie Wang, Xiang Bai,
- Abstract要約: 本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
- 参考スコア(独自算出の注目度): 70.19607283302712
- License:
- Abstract: The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/Fantasyele/LLaVA-KD.
- Abstract(参考訳): LLM(Large Language Models)の成功により、研究者は視覚と言語を統一した理解のためにMLLM(Multimodal Large Language Models)を探索した。
しかし、MLLMのモデルサイズの増加と計算複雑性は、資源制約のある環境での使用を制限する。
小型MLLM(s-MLLM)は、計算要求を減らしながら大規模モデル(l-MLLM)の能力を維持することを目的としているが、性能は著しく低下する。
上記の課題に対処するため,l-MLLMからs-MLLMへ知識を伝達する新しいLLaVA-KDフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるためのMDistと,l-MLLMの視覚的特徴間の相関関係をモデル化するRDistを紹介する。
さらに、s-MLLMの可能性を完全に活用するための3段階のトレーニング手法を提案する。
1) 視覚・テクスチュア表現の整合のための蒸留前訓練
2)マルチモーダル理解とモデル装備のための細調整の監督
3)l-MLLM機能を更に伝達するための蒸留細管
私たちのアプローチは、小さなモデルのアーキテクチャを変更することなく、パフォーマンスを大幅に改善します。
広範囲な実験とアブレーション研究により、提案した各成分の有効性が検証された。
コードはhttps://github.com/Fantasyele/LLaVA-KD.comで入手できる。
関連論文リスト
- Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoDは、小規模マルチモーダル言語モデルの効率的なトレーニングを可能にするために設計されたフレームワークである。
スパースミキサーアーキテクチャを言語モデルに統合することにより、s-MLLMのネットワーク構造を最適化する。
また,包括的知識移動を確保するために,先進的な知識移動戦略を提案する。
論文 参考訳(メタデータ) (2024-08-28T15:52:23Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
MLLM(Multimodal Large Language Models)は近年,知覚能力や推論能力が著しく向上している。
イメージレベルの監督を施したトレーニングアダプタは、しばしば重大なミスアライメントをもたらす。
本稿では,視覚言語による事前学習モデルを活用したトークンレベルのアライメント手法であるSupervised Embedding Alignment (SEA)を紹介する。
論文 参考訳(メタデータ) (2024-08-21T17:58:02Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [60.17448025069594]
マルチモーダルなアイテム・ツー・イテムレコメンデーションにおけるマルチモーダル表現を強化するための大規模言語モデルの可能性について検討する。
1つの実現可能な方法は、表現タスクのためにMLLM(Multimodal Large Language Models)を転送することである。
マルチモーダル表現に特化して設計された新しいトレーニングフレームワークNoteLLM-2を提案する。
論文 参考訳(メタデータ) (2024-05-27T03:24:01Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。