Carbon Connect: An Ecosystem for Sustainable Computing
- URL: http://arxiv.org/abs/2405.13858v2
- Date: Wed, 21 Aug 2024 15:15:57 GMT
- Title: Carbon Connect: An Ecosystem for Sustainable Computing
- Authors: Benjamin C. Lee, David Brooks, Arthur van Benthem, Udit Gupta, Gage Hills, Vincent Liu, Benjamin Pierce, Christopher Stewart, Emma Strubell, Gu-Yeon Wei, Adam Wierman, Yuan Yao, Minlan Yu,
- Abstract summary: Carbon Connect envisions coordinated research thrusts that produce design and management strategies for sustainable computer systems.
We will require accurate models for carbon accounting in computing technology.
New hardware design and management strategies must be cognizant of economic policy and regulatory landscape.
- Score: 22.998262140061733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing is at a moment of profound opportunity. Emerging applications -- such as capable artificial intelligence, immersive virtual realities, and pervasive sensor systems -- drive unprecedented demand for computer. Despite recent advances toward net zero carbon emissions, the computing industry's gross energy usage continues to rise at an alarming rate, outpacing the growth of new energy installations and renewable energy deployments. A shift towards sustainability is needed to spark a transformation in how computer systems are manufactured, allocated, and consumed. Carbon Connect envisions coordinated research thrusts that produce design and management strategies for sustainable, next-generation computer systems. These strategies must flatten and then reverse growth trajectories for computing power and carbon for society's most rapidly growing applications such as artificial intelligence and virtual spaces. We will require accurate models for carbon accounting in computing technology. For embodied carbon, we must re-think conventional design strategies -- over-provisioned monolithic servers, frequent hardware refresh cycles, custom silicon -- and adopt life-cycle design strategies that more effectively reduce, reuse and recycle hardware at scale. For operational carbon, we must not only embrace renewable energy but also design systems to use that energy more efficiently. Finally, new hardware design and management strategies must be cognizant of economic policy and regulatory landscape, aligning private initiatives with societal goals. Many of these broader goals will require computer scientists to develop deep, enduring collaborations with researchers in economics, law, and industrial ecology to spark change in broader practice.
Related papers
- Quantum Computing for Climate Resilience and Sustainability Challenges [0.23558144417896584]
Review explores the application of quantum machine learning and optimization techniques for climate change prediction and enhancing sustainable development.
By synthesizing the latest research and developments, this paper highlights how QC and quantum machine learning can optimize multi-infrastructure systems towards climate neutrality.
arXiv Detail & Related papers (2024-07-23T08:54:12Z) - Beyond Efficiency: Scaling AI Sustainably [4.711003829305544]
Modern AI applications have driven ever-increasing demands in computing.
This paper characterizes the carbon impact of AI, including both operational carbon emissions from training and inference as well as embodied carbon emissions from hardware manufacturing.
arXiv Detail & Related papers (2024-06-08T00:07:16Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
We draw attention to CompSys as a vital part of ICT.
Each of the Top Sectors of the Dutch Economy, each route in the National Research Agenda, and each of the UN Sustainable Development Goals pose challenges that cannot be addressed without CompSys advances.
arXiv Detail & Related papers (2022-05-26T11:02:29Z) - Chasing Carbon: The Elusive Environmental Footprint of Computing [11.992632765006087]
We analyze the environmental effects of computing in terms of carbon emissions.
Most emissions related to modern mobile and data-center equipment come from hardware manufacturing and infrastructure.
arXiv Detail & Related papers (2020-10-28T18:15:22Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.