Marrying Causal Representation Learning with Dynamical Systems for Science
- URL: http://arxiv.org/abs/2405.13888v1
- Date: Wed, 22 May 2024 18:00:41 GMT
- Title: Marrying Causal Representation Learning with Dynamical Systems for Science
- Authors: Dingling Yao, Caroline Muller, Francesco Locatello,
- Abstract summary: Causal representation learning promises to extend causal models to hidden causal variables from raw entangled measurements.
In this paper, we draw a clear connection between the two and their key assumptions.
We learn explicitly controllable models that isolate the trajectory-specific parameters for further downstream tasks.
- Score: 20.370707645572676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal representation learning promises to extend causal models to hidden causal variables from raw entangled measurements. However, most progress has focused on proving identifiability results in different settings, and we are not aware of any successful real-world application. At the same time, the field of dynamical systems benefited from deep learning and scaled to countless applications but does not allow parameter identification. In this paper, we draw a clear connection between the two and their key assumptions, allowing us to apply identifiable methods developed in causal representation learning to dynamical systems. At the same time, we can leverage scalable differentiable solvers developed for differential equations to build models that are both identifiable and practical. Overall, we learn explicitly controllable models that isolate the trajectory-specific parameters for further downstream tasks such as out-of-distribution classification or treatment effect estimation. We experiment with a wind simulator with partially known factors of variation. We also apply the resulting model to real-world climate data and successfully answer downstream causal questions in line with existing literature on climate change.
Related papers
- Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear or affine nonlinear latent dynamic systems, it is possible to identify the representations up to scaling and determine the models up to some simple transformations.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
We present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models.
The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters.
MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage.
arXiv Detail & Related papers (2024-04-20T08:34:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Beyond Convergence: Identifiability of Machine Learning and Deep
Learning Models [0.0]
We investigate the notion of model parameter identifiability through a case study focused on parameter estimation from motion sensor data.
We employ a deep neural network to estimate subject-wise parameters, including mass, stiffness, and equilibrium leg length.
The results show that while certain parameters can be identified from the observation data, others remain unidentifiable.
arXiv Detail & Related papers (2023-07-21T03:40:53Z) - Causal Flow-based Variational Auto-Encoder for Disentangled Causal Representation Learning [1.4875602190483512]
Disentangled representation learning aims to learn low-dimensional representations of data, where each dimension corresponds to an underlying generative factor.
We design a new VAE-based framework named Disentangled Causal Variational Auto-Encoder (DCVAE)
DCVAE includes a variant of autoregressive flows known as causal flows, capable of learning effective causal disentangled representations.
arXiv Detail & Related papers (2023-04-18T14:26:02Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.