Memory Scraping Attack on Xilinx FPGAs: Private Data Extraction from Terminated Processes
- URL: http://arxiv.org/abs/2405.13927v1
- Date: Wed, 22 May 2024 18:58:20 GMT
- Title: Memory Scraping Attack on Xilinx FPGAs: Private Data Extraction from Terminated Processes
- Authors: Bharadwaj Madabhushi, Sandip Kundu, Daniel Holcomb,
- Abstract summary: Stratix 10 FPGAs can achieve up to 90% of the performance of a TitanX Pascal GPU while consuming less than 50% of the power.
This makes FPGAs an attractive choice for accelerating machine learning (ML) workloads.
However, our research finds privacy and security vulnerabilities in existing Xilinx FPGA-based hardware acceleration solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: FPGA-based hardware accelerators are becoming increasingly popular due to their versatility, customizability, energy efficiency, constant latency, and scalability. FPGAs can be tailored to specific algorithms, enabling efficient hardware implementations that effectively leverage algorithm parallelism. This can lead to significant performance improvements over CPUs and GPUs, particularly for highly parallel applications. For example, a recent study found that Stratix 10 FPGAs can achieve up to 90\% of the performance of a TitanX Pascal GPU while consuming less than 50\% of the power. This makes FPGAs an attractive choice for accelerating machine learning (ML) workloads. However, our research finds privacy and security vulnerabilities in existing Xilinx FPGA-based hardware acceleration solutions. These vulnerabilities arise from the lack of memory initialization and insufficient process isolation, which creates potential avenues for unauthorized access to private data used by processes. To illustrate this issue, we conducted experiments using a Xilinx ZCU104 board running the PetaLinux tool from Xilinx. We found that PetaLinux does not effectively clear memory locations associated with a terminated process, leaving them vulnerable to memory scraping attack (MSA). This paper makes two main contributions. The first contribution is an attack methodology of using the Xilinx debugger from a different user space. We find that we are able to access process IDs, virtual address spaces, and pagemaps of one user from a different user space because of lack of adequate process isolation. The second contribution is a methodology for characterizing terminated processes and accessing their private data. We illustrate this on Xilinx ML application library.
Related papers
- Efficient LLM Inference with I/O-Aware Partial KV Cache Recomputation [7.204881999658682]
Inference for Large Language Models (LLMs) is computationally demanding.
To reduce the cost of auto-regressive decoding, Key-Value ( KV) caching is used to store intermediate activations.
The memory required for KV caching grows rapidly, often exceeding the capacity of GPU memory.
A cost-effective alternative is to offload KV cache to CPU memory, which alleviates GPU memory pressure but shifts the bottleneck to the limited bandwidth of the PCIe connection between the CPU and GPU.
arXiv Detail & Related papers (2024-11-26T04:03:14Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
arXiv Detail & Related papers (2024-07-22T14:37:58Z) - NeuraChip: Accelerating GNN Computations with a Hash-based Decoupled Spatial Accelerator [3.926150707772004]
We introduce NeuraChip, a novel GNN spatial accelerator based on Gustavson's algorithm.
NeuraChip decouples the multiplication and addition computations in sparse matrix multiplication.
We also present NeuraSim, an open-source, cycle-accurate, multi-threaded, modular simulator for comprehensive performance analysis.
arXiv Detail & Related papers (2024-04-23T20:51:09Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - FlexGen: High-Throughput Generative Inference of Large Language Models
with a Single GPU [89.2451963569343]
FlexGen is a generation engine for running large language model (LLM) inference on a single commodity GPU.
When running OPT-175B on a single 16GB GPU, FlexGen achieves significantly higher throughput compared to state-of-the-art offloading systems.
On the HELM benchmark, FlexGen can benchmark a 30B model with a 16GB GPU on 7 representative sub-scenarios in 21 hours.
arXiv Detail & Related papers (2023-03-13T05:19:28Z) - Memory Safe Computations with XLA Compiler [14.510796427699459]
XLA compiler extension adjusts the representation of an algorithm according to a user-specified memory limit.
We show that k-nearest neighbour and sparse Gaussian process regression methods can be run at a much larger scale on a single device.
arXiv Detail & Related papers (2022-06-28T16:59:28Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
One of the most efficient methods to solve L2-regularized primal problems, such as logistic regression and linear support vector machine (SVM) classification, is the widely used trust region Newton algorithm, TRON.
We show that using judicious GPU-optimization principles, TRON training time for different losses and feature representations may be drastically reduced.
arXiv Detail & Related papers (2020-08-08T03:40:27Z) - Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO [46.20949184826173]
This work focuses on the applicability of efficient low-level, GPU hardware-specific instructions to improve on existing computer vision algorithms.
Especially non-maxima suppression and the subsequent feature selection are prominent contributors to the overall image processing latency.
arXiv Detail & Related papers (2020-03-30T14:16:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.