Node-Time Conditional Prompt Learning In Dynamic Graphs
- URL: http://arxiv.org/abs/2405.13937v7
- Date: Sun, 13 Oct 2024 03:40:08 GMT
- Title: Node-Time Conditional Prompt Learning In Dynamic Graphs
- Authors: Xingtong Yu, Zhenghao Liu, Xinming Zhang, Yuan Fang,
- Abstract summary: We propose DYGPROMPT, a novel pre-training and prompt learning framework for dynamic graph modeling.
We recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks.
- Score: 14.62182210205324
- License:
- Abstract: Dynamic graphs capture evolving interactions between entities, such as in social networks, online learning platforms, and crowdsourcing projects. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique. However, they are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs, but most existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DYGPROMPT, a novel pre-training and prompt learning framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and temporal variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DYGPROMPT through extensive experiments on four public datasets.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
Dynamic graph representations have emerged as a new machine learning problem.
This paper aims at providing a review of problems and models related to dynamic graph learning.
arXiv Detail & Related papers (2023-04-12T09:39:17Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
We develop dynamic effective connectivity estimation via neural network training (DECENNT)
DECENNT outperforms state-of-the-art (SOTA) methods on five different tasks and infers interpretable task-specific dynamic graphs.
arXiv Detail & Related papers (2022-02-04T21:14:21Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Pre-Training on Dynamic Graph Neural Networks [26.139844652756334]
This paper proposes a pre-training method on dynamic graph neural networks (PT-DGNN)
It uses dynamic attributed graph generation tasks to simultaneously learn the structure, semantics, and evolution features of the graph.
arXiv Detail & Related papers (2021-02-24T16:06:32Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs [26.77596449192451]
We propose a model that predicts the evolution of dynamic graphs.
Specifically, we use a graph neural network along with a recurrent architecture to capture the temporal evolution patterns of dynamic graphs.
We evaluate the proposed model on several artificial datasets following common network evolving dynamics, as well as on real-world datasets.
arXiv Detail & Related papers (2020-03-02T12:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.