Principal eigenstate classical shadows
- URL: http://arxiv.org/abs/2405.13939v1
- Date: Wed, 22 May 2024 19:13:05 GMT
- Title: Principal eigenstate classical shadows
- Authors: Daniel Grier, Hakop Pashayan, Luke Schaeffer,
- Abstract summary: Given many copies of an unknown quantum state $rho$, we consider the task of learning a classical description of its principal eigenstate.
We present a protocol for this task scaling with the principal eigenvalue $lambda$ and show that it is optimal within a space of natural approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given many copies of an unknown quantum state $\rho$, we consider the task of learning a classical description of its principal eigenstate. Namely, assuming that $\rho$ has an eigenstate $|\phi\rangle$ with (unknown) eigenvalue $\lambda > 1/2$, the goal is to learn a (classical shadows style) classical description of $|\phi\rangle$ which can later be used to estimate expectation values $\langle \phi |O| \phi \rangle$ for any $O$ in some class of observables. We consider the sample-complexity setting in which generating a copy of $\rho$ is expensive, but joint measurements on many copies of the state are possible. We present a protocol for this task scaling with the principal eigenvalue $\lambda$ and show that it is optimal within a space of natural approaches, e.g., applying quantum state purification followed by a single-copy classical shadows scheme. Furthermore, when $\lambda$ is sufficiently close to $1$, the performance of our algorithm is optimal--matching the sample complexity for pure state classical shadows.
Related papers
- Optimal high-precision shadow estimation [22.01044188849049]
Formally we give a protocol that measures $O(log(m)/epsilon2)$ copies of an unknown mixed state $rhoinmathbbCdtimes d$.
We show via dimensionality reduction that we can rescale $epsilon$ and $d$ to reduce to the regime where $epsilon le O(d-1/2)$.
arXiv Detail & Related papers (2024-07-18T19:42:49Z) - Improved classical shadows from local symmetries in the Schur basis [4.462208715451194]
We study the sample complexity of the classical shadows task.
We present the first joint measurement protocol for classical shadows whose sample complexity scales with the rank of the unknown state.
arXiv Detail & Related papers (2024-05-15T17:33:10Z) - Tight Bounds for Quantum Phase Estimation and Related Problems [0.90238471756546]
We show that a phase estimation algorithm with precision $delta$ and error probability $epsilon$ has cost $Omegaleft(frac1deltalog1epsilonright)$.
We also show that having lots advice (applications of the advice-preparing unitary) does not significantly reduce cost, and neither does knowledge of the eigenbasis of $U$.
arXiv Detail & Related papers (2023-05-08T17:46:01Z) - Sample-optimal classical shadows for pure states [0.0]
We consider the classical shadows task for pure states in the setting of both joint and independent measurements.
In the independent measurement setting, we show that $mathcal O(sqrtBd epsilon-1 + epsilon-2)$ samples suffice.
arXiv Detail & Related papers (2022-11-21T19:24:17Z) - Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic
Shortest Path [106.37656068276902]
We study the sample complexity of learning an $epsilon$-optimal policy in the Shortest Path (SSP) problem.
We derive complexity bounds when the learner has access to a generative model.
We show that there exists a worst-case SSP instance with $S$ states, $A$ actions, minimum cost $c_min$, and maximum expected cost of the optimal policy over all states $B_star$.
arXiv Detail & Related papers (2022-10-10T18:34:32Z) - Quantum tomography using state-preparation unitaries [0.22940141855172028]
We describe algorithms to obtain an approximate classical description of a $d$-dimensional quantum state when given access to a unitary.
We show that it takes $widetildeTheta(d/varepsilon)$ applications of the unitary to obtain an $varepsilon$-$ell$-approximation of the state.
We give an efficient algorithm for obtaining Schatten $q$-optimal estimates of a rank-$r$ mixed state.
arXiv Detail & Related papers (2022-07-18T17:56:18Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - Shuffling Recurrent Neural Networks [97.72614340294547]
We propose a novel recurrent neural network model, where the hidden state $h_t$ is obtained by permuting the vector elements of the previous hidden state $h_t-1$.
In our model, the prediction is given by a second learned function, which is applied to the hidden state $s(h_t)$.
arXiv Detail & Related papers (2020-07-14T19:36:10Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.