Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space
- URL: http://arxiv.org/abs/2405.13969v1
- Date: Wed, 22 May 2024 20:09:21 GMT
- Title: Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space
- Authors: Mahsa Golchoubian, Moojan Ghafurian, Kerstin Dautenhahn, Nasser Lashgarian Azad,
- Abstract summary: This work introduces an integrated prediction and planning approach that incorporates the uncertainties of predicted pedestrian states in the training of a model-free DRL algorithm.
A novel reward function encourages the AV to respect pedestrians' personal space, decrease speed during close approaches, and minimize the collision probability with their predicted paths.
Results show a 40% decrease in collision rate and a 15% increase in minimum distance to pedestrians compared to the state of the art model that does not account for prediction uncertainty.
- Score: 3.487370856323828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe, socially compliant, and efficient navigation of low-speed autonomous vehicles (AVs) in pedestrian-rich environments necessitates considering pedestrians' future positions and interactions with the vehicle and others. Despite the inevitable uncertainties associated with pedestrians' predicted trajectories due to their unobserved states (e.g., intent), existing deep reinforcement learning (DRL) algorithms for crowd navigation often neglect these uncertainties when using predicted trajectories to guide policy learning. This omission limits the usability of predictions when diverging from ground truth. This work introduces an integrated prediction and planning approach that incorporates the uncertainties of predicted pedestrian states in the training of a model-free DRL algorithm. A novel reward function encourages the AV to respect pedestrians' personal space, decrease speed during close approaches, and minimize the collision probability with their predicted paths. Unlike previous DRL methods, our model, designed for AV operation in crowded spaces, is trained in a novel simulation environment that reflects realistic pedestrian behaviour in a shared space with vehicles. Results show a 40% decrease in collision rate and a 15% increase in minimum distance to pedestrians compared to the state of the art model that does not account for prediction uncertainty. Additionally, the approach outperforms model predictive control methods that incorporate the same prediction uncertainties in terms of both performance and computational time, while producing trajectories closer to human drivers in similar scenarios.
Related papers
- Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Motion Planning for Autonomous Vehicles in the Presence of Uncertainty
Using Reinforcement Learning [0.0]
Motion planning under uncertainty is one of the main challenges in developing autonomous driving vehicles.
We propose a reinforcement learning based solution to manage uncertainty by optimizing for the worst case outcome.
The proposed approach yields much better motion planning behavior compared to conventional RL algorithms and behaves comparably to humans driving style.
arXiv Detail & Related papers (2021-10-01T20:32:25Z) - Maneuver-Aware Pooling for Vehicle Trajectory Prediction [3.5851903214591663]
This paper focuses on predicting the behavior of the surrounding vehicles of an autonomous vehicle on highways.
We propose a novel pooling strategy to capture the inter-dependencies between the neighbor vehicles.
We incorporated the proposed pooling mechanism into a generative encoder-decoder model, and evaluated our method on the public NGSIM dataset.
arXiv Detail & Related papers (2021-04-29T02:12:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.