Leveraging World Events to Predict E-Commerce Consumer Demand under Anomaly
- URL: http://arxiv.org/abs/2405.13995v1
- Date: Wed, 22 May 2024 21:05:35 GMT
- Title: Leveraging World Events to Predict E-Commerce Consumer Demand under Anomaly
- Authors: Dan Kalifa, Uriel Singer, Ido Guy, Guy D. Rosin, Kira Radinsky,
- Abstract summary: Time series sales forecasting for e-commerce is difficult during periods with many anomalies.
We propose a novel methodology based on transformers to construct an embedding of a day based on the relations of the day's events.
We empirically evaluate the methods over a large e-commerce products sales dataset, extracted from eBay.
- Score: 32.54836258878438
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Consumer demand forecasting is of high importance for many e-commerce applications, including supply chain optimization, advertisement placement, and delivery speed optimization. However, reliable time series sales forecasting for e-commerce is difficult, especially during periods with many anomalies, as can often happen during pandemics, abnormal weather, or sports events. Although many time series algorithms have been applied to the task, prediction during anomalies still remains a challenge. In this work, we hypothesize that leveraging external knowledge found in world events can help overcome the challenge of prediction under anomalies. We mine a large repository of 40 years of world events and their textual representations. Further, we present a novel methodology based on transformers to construct an embedding of a day based on the relations of the day's events. Those embeddings are then used to forecast future consumer behavior. We empirically evaluate the methods over a large e-commerce products sales dataset, extracted from eBay, one of the world's largest online marketplaces. We show over numerous categories that our method outperforms state-of-the-art baselines during anomalies.
Related papers
- A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers [70.20477771578824]
Existing approaches to event prediction include time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance.
We propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective.
Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases.
arXiv Detail & Related papers (2024-10-14T15:59:16Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Multimodal Temporal Fusion Transformers Are Good Product Demand
Forecasters [18.52252059555198]
Multimodal demand forecasting aims at predicting product demand utilizing visual, textual, and contextual information.
This paper proposes a method for multimodal product demand forecasting using convolutional, graph-based, and transformer-based architectures.
arXiv Detail & Related papers (2023-07-05T18:23:13Z) - Improved Sales Forecasting using Trend and Seasonality Decomposition
with LightGBM [9.788039182463768]
We propose a new measure to indicate the unique impacts of the trend and seasonality components on a time series.
Our experiments show that the proposed strategy can achieve improved accuracy.
arXiv Detail & Related papers (2023-05-26T18:49:42Z) - Multimodal Neural Network For Demand Forecasting [0.8602553195689513]
We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information.
We show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques.
arXiv Detail & Related papers (2022-10-20T18:06:36Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocast is a dataset containing thousands of forecasting questions and an accompanying news corpus.
The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts.
We test language models on our forecasting task and find that performance is far below a human expert baseline.
arXiv Detail & Related papers (2022-06-30T17:59:14Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizE is a novel deep learning framework which utilizes Transformers for accurate size prediction.
We demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines.
As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system.
arXiv Detail & Related papers (2021-05-04T15:23:59Z) - Online Fashion Commerce: Modelling Customer Promise Date [0.0]
In e-commerce, accurate prediction of delivery dates plays a major role in customer experience.
We present a machine learning-based approach for penalizing incorrect predictions differently.
The proposed model is deployed internally for Fashion e-Commerce and is operational.
arXiv Detail & Related papers (2021-05-01T18:16:12Z) - Event Prediction in the Big Data Era: A Systematic Survey [7.3810864598379755]
Event prediction is becoming a viable option in the big data era.
This paper aims to provide a systematic and comprehensive survey of the technologies, applications, and evaluations of event prediction.
arXiv Detail & Related papers (2020-07-19T23:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.