Improved Sales Forecasting using Trend and Seasonality Decomposition
with LightGBM
- URL: http://arxiv.org/abs/2305.17201v2
- Date: Fri, 1 Sep 2023 19:00:00 GMT
- Title: Improved Sales Forecasting using Trend and Seasonality Decomposition
with LightGBM
- Authors: Tong Zhou
- Abstract summary: We propose a new measure to indicate the unique impacts of the trend and seasonality components on a time series.
Our experiments show that the proposed strategy can achieve improved accuracy.
- Score: 9.788039182463768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retail sales forecasting presents a significant challenge for large retailers
such as Walmart and Amazon, due to the vast assortment of products,
geographical location heterogeneity, seasonality, and external factors
including weather, local economic conditions, and geopolitical events. Various
methods have been employed to tackle this challenge, including traditional time
series models, machine learning models, and neural network mechanisms, but the
difficulty persists. Categorizing data into relevant groups has been shown to
improve sales forecast accuracy as time series from different categories may
exhibit distinct patterns. In this paper, we propose a new measure to indicate
the unique impacts of the trend and seasonality components on a time series and
suggest grouping time series based on this measure. We apply this approach to
Walmart sales data from 01/29/2011 to 05/22/2016 and generate sales forecasts
from 05/23/2016 to 06/19/2016. Our experiments show that the proposed strategy
can achieve improved accuracy. Furthermore, we present a robust pipeline for
conducting retail sales forecasting.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Multimodal Neural Network For Demand Forecasting [0.8602553195689513]
We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information.
We show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques.
arXiv Detail & Related papers (2022-10-20T18:06:36Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques.
Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort.
The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition.
arXiv Detail & Related papers (2022-04-16T12:03:52Z) - A Comparative Study on Forecasting of Retail Sales [0.0]
We benchmark forecasting models on historical sales data from Walmart to predict their future sales.
We apply these models on the forecasting challenge dataset (M5 forecasting by Kaggle)
arXiv Detail & Related papers (2022-03-14T04:24:29Z) - Forecasting sales with Bayesian networks: a case study of a supermarket
product in the presence of promotions [0.0]
We develop a BN model to forecast promotional sales where a combination of factors such as price, type of promotions, and product location impacts sales.
This paper confirms that BNs can be effectively used to forecast sales, especially during promotions.
arXiv Detail & Related papers (2021-12-16T08:52:22Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
We consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets.
We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence.
arXiv Detail & Related papers (2020-12-08T16:30:43Z) - How Much Can A Retailer Sell? Sales Forecasting on Tmall [20.51263243320733]
We study the case of retailers' sales forecasting on Tmall|the world's leading online B2C platform.
We design two mechanisms for sales forecasting, i.e., seasonality extraction and distribution transformation.
arXiv Detail & Related papers (2020-02-27T06:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.