論文の概要: Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
- arxiv url: http://arxiv.org/abs/2405.14012v1
- Date: Wed, 22 May 2024 21:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:54:29.265279
- Title: Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた実時間オントロジー駆動型シンボリック知識キャプチャ
- Authors: Tolga Çöplü, Arto Bendiken, Andrii Skomorokhov, Eduard Bateiko, Stephen Cobb,
- Abstract要約: 本稿では,ナレッジグラフを用いたユーザプロンプトからの個人情報の取得について検討する。
我々は、個人情報をモデル化するKNOWオントロジーのサブセットを使用して、これらの概念に基づいて言語モデルを訓練する。
そして、特別に構築されたデータセットを用いて、知識捕捉の成功を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In applications such as personal assistants, large language models (LLMs) must consider the user's personal information and preferences. However, LLMs lack the inherent ability to learn from user interactions. This paper explores capturing personal information from user prompts using ontology and knowledge-graph approaches. We use a subset of the KNOW ontology, which models personal information, to train the language model on these concepts. We then evaluate the success of knowledge capture using a specially constructed dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-PTODSKC
- Abstract(参考訳): パーソナルアシスタントのようなアプリケーションでは、大きな言語モデル(LLM)はユーザの個人情報や好みを考慮しなければならない。
しかし、LLMはユーザーインタラクションから学ぶ能力に欠けていた。
本稿では,オントロジーとナレッジグラフを用いたユーザプロンプトからの個人情報の取得について検討する。
我々は、個人情報をモデル化するKNOWオントロジーのサブセットを使用して、これらの概念に基づいて言語モデルを訓練する。
そして、特別に構築されたデータセットを用いて、知識捕捉の成功を評価する。
私たちのコードとデータセットはhttps://github.com/HaltiaAI/paper-PTODSKCで公開されています。
関連論文リスト
- Limited Out-of-Context Knowledge Reasoning in Large Language Models [65.72847298578071]
LLM(Large Language Models)は、知識ベースとしての強力な能力と、コンテキスト内推論能力を示す。
本稿では、複数の知識を組み合わせて新しい知識を推論する、アウト・オブ・コンテクストの知識推論(OCKR: Out-of-context Knowledge Reasoning)について論じる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
入力テキスト中の文脈からプロンプトを生成することにより,知識注入のためのシンプルだが一般化可能なアプローチを提案する。
本実験は, 微調整LDMを用いて評価する手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-03T11:19:26Z) - Prompt-Time Symbolic Knowledge Capture with Large Language Models [0.0]
ユーザ固有の知識で大きな言語モデル(LLM)を拡張することは、パーソナルAIアシスタントのような現実世界のアプリケーションにとって不可欠である。
本稿では,既存のLLM機能を活用して,迅速な知識獲得を実現する。
論文 参考訳(メタデータ) (2024-02-01T08:15:28Z) - Finetuning an LLM on Contextual Knowledge of Classics for Q&A [0.0]
このプロジェクトは、クラシックの知識と人工知能の能力を統合する試みである。
本研究の目的は,文脈知識を正確に再現するだけでなく,一貫した「個性」を示すLLMを開発することである。
論文 参考訳(メタデータ) (2023-12-13T02:32:01Z) - User Modeling in the Era of Large Language Models: Current Research and
Future Directions [26.01029236902786]
ユーザモデリング(UM)は、特定のユーザに関するユーザデータからパターンを発見し、表現を学ぶことを目的としている。
データは通常、大量のユーザ生成コンテンツ(UGC)とオンラインインタラクションを含むため、テキストとグラフの2つの一般的なタイプのユーザデータである。
近年,大規模言語モデル (LLM) はテキストデータの生成,理解,推論において優れた性能を示している。
論文 参考訳(メタデータ) (2023-12-11T03:59:36Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
大規模言語モデル (LLM) は、理解、推論、指導において顕著な知性を示した。
本稿では, ブラックボックスレコメンデータモデルを説明するために, LLM を代理モデルとして利用することについて検討する。
効果的なアライメントを容易にするために,行動アライメント,意図アライメント,ハイブリッドアライメントという3つの手法を導入する。
論文 参考訳(メタデータ) (2023-11-18T03:05:43Z) - KnowledGPT: Enhancing Large Language Models with Retrieval and Storage
Access on Knowledge Bases [55.942342665806656]
KnowledGPTは、様々な知識ベースで大きな言語モデルをブリッジするための包括的なフレームワークである。
検索プロセスでは思考プロンプトプログラムを使用し,KBの検索言語をコード形式で生成する。
KnowledGPTは、個々のユーザ要求に合わせて、知識をパーソナライズされたKBに格納する機能を提供する。
論文 参考訳(メタデータ) (2023-08-17T13:07:00Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
言語条件制御のためのデータ駆動型インストラクション拡張(DIAL)について紹介する。
我々は,CLIPのセマンティック理解を利用したセミ言語ラベルを用いて,未知の実演データの大規模なデータセットに知識を伝達する。
DIALは、模倣学習ポリシーによって、新しい能力を獲得し、元のデータセットにない60の新しい命令を一般化することができる。
論文 参考訳(メタデータ) (2022-11-21T18:56:00Z) - Knowledgeable Salient Span Mask for Enhancing Language Models as
Knowledge Base [51.55027623439027]
我々は、モデルが構造化されていないテキストから、完全に自己教師された方法でより多くの知識を学習するのを助ける2つのソリューションを開発する。
最高の知識を得るために、私たちは、継続的事前学習における知識の完全な自己教師型学習を初めて探求します。
論文 参考訳(メタデータ) (2022-04-17T12:33:34Z) - Knowledge Based Multilingual Language Model [44.70205282863062]
知識に基づく多言語言語モデル(KMLM)を事前学習するための新しいフレームワークを提案する。
我々は、ウィキデータ知識グラフを用いて、大量のコード切替合成文と推論に基づく多言語学習データを生成する。
生成したデータの文内構造と文間構造に基づいて,知識学習を容易にするための事前学習タスクを設計する。
論文 参考訳(メタデータ) (2021-11-22T02:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。