論文の概要: Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge
- arxiv url: http://arxiv.org/abs/2410.04784v1
- Date: Mon, 7 Oct 2024 06:49:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 01:58:01.013802
- Title: Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge
- Title(参考訳): 形式性は好まれる:知識の衝突を伴うデータに基づく大規模言語モデルの学習選好の解明
- Authors: Jiahuan Li, Yiqing Cao, Shujian Huang, Jiajun Chen,
- Abstract要約: 大規模言語モデルは、多くの知識集約的なタスクにおいて優れたパフォーマンスを示している。
しかし、事前学習データには誤解を招く傾向があり、矛盾する情報も含まれている。
本研究では,LLMの学習嗜好を,矛盾する知識を持つデータに対して体系的に分析する。
- 参考スコア(独自算出の注目度): 55.65162959527848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Having been trained on massive pretraining data, large language models have shown excellent performance on many knowledge-intensive tasks. However, pretraining data tends to contain misleading and even conflicting information, and it is intriguing to understand how LLMs handle these noisy data during training. In this study, we systematically analyze LLMs' learning preferences for data with conflicting knowledge. We find that pretrained LLMs establish learning preferences similar to humans, i.e., preferences towards formal texts and texts with fewer spelling errors, resulting in faster learning and more favorable treatment of knowledge in data with such features when facing conflicts. This finding is generalizable across models and languages and is more evident in larger models. An in-depth analysis reveals that LLMs tend to trust data with features that signify consistency with the majority of data, and it is possible to instill new preferences and erase old ones by manipulating the degree of consistency with the majority data.
- Abstract(参考訳): 大規模な事前学習データに基づいて訓練された大規模言語モデルは、多くの知識集約的なタスクにおいて優れたパフォーマンスを示している。
しかし、事前学習データには誤解を招く情報や矛盾する情報も含まれているため、LLMがこれらのノイズの多いデータをトレーニング中にどのように扱うのかを理解するのは興味深い。
本研究では,LLMの学習嗜好を,矛盾する知識を持つデータに対して体系的に分析する。
事前学習されたLLMは、人間と類似した学習嗜好、すなわち、スペルエラーが少ない形式的なテキストやテキストへの嗜好を確立し、結果として、矛盾に直面した場合に、データ内の知識をより早く、より好ましい扱いをする。
この発見はモデルや言語にまたがって一般化可能であり、より大きなモデルではより明らかである。
詳細な分析によると、LLMはデータの大部分との整合性を示す特徴を持つデータを信頼する傾向にあり、多数データとの整合性の程度を操作することによって、新しい好みを注入し、古いものを削除することが可能である。
関連論文リスト
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
大規模言語モデル(LLM)の事前トレーニングは伝統的に、Webスケールデータセットからランダムにサンプリングされたデータブロックの自己回帰言語モデリングに依存している。
我々は、空間的反復のような人間の学習技術からインスピレーションを得て、LLMのランダムなデータサンプリングが、データを忘れがちな高いトレーニングコストと低品質モデルをもたらすという仮説を立てる。
ウェブスケール情報を長期記憶に効果的にコミットするために,LFR(Learn, Focus, and Review)ペタゴギーを提案する。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models [21.10890310571397]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
この研究は、トレーニング中に言語モデルがデータセットを見たかどうかを評価するためのさまざまなテクニックを導入している。
次に、トレーニング中に見られたデータセット上でのLLMの数発の学習性能と、トレーニング後にリリースされたデータセットのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-04-09T10:58:21Z) - Dated Data: Tracing Knowledge Cutoffs in Large Language Models [47.987664966633865]
LLMの資源レベルの時間的アライメントに有効なカットオフを推定するための簡単な手法を提案する。
効果的なカットオフは、報告されたカットオフとしばしば異なります。
提案手法は,(1)非自明なデータ量によるCommonCrawlデータの時間的偏りと,(2)意味的重複と語彙的近接重複を含むLLM重複の重複という2つの原因を明らかにした。
論文 参考訳(メタデータ) (2024-03-19T17:57:58Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。