Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
- URL: http://arxiv.org/abs/2405.14012v1
- Date: Wed, 22 May 2024 21:40:34 GMT
- Title: Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
- Authors: Tolga Çöplü, Arto Bendiken, Andrii Skomorokhov, Eduard Bateiko, Stephen Cobb,
- Abstract summary: This paper explores capturing personal information from user prompts using knowledge-graph approaches.
We use a subset of the KNOW ontology, which models personal information, to train the language model on these concepts.
We then evaluate the success of knowledge capture using a specially constructed dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In applications such as personal assistants, large language models (LLMs) must consider the user's personal information and preferences. However, LLMs lack the inherent ability to learn from user interactions. This paper explores capturing personal information from user prompts using ontology and knowledge-graph approaches. We use a subset of the KNOW ontology, which models personal information, to train the language model on these concepts. We then evaluate the success of knowledge capture using a specially constructed dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-PTODSKC
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Beyond Right and Wrong: Mitigating Cold Start in Knowledge Tracing Using Large Language Model and Option Weight [0.14999444543328289]
Knowledge Tracing (KT) is vital in educational data mining, enabling personalized learning.
This study introduces the LOKT (Large Language Model Option-weighted Knowledge Tracing) model to address the cold start problem.
arXiv Detail & Related papers (2024-10-14T16:25:48Z) - Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
Large language models have shown excellent performance on many knowledge-intensive tasks.
However, pretraining data tends to contain misleading and even conflicting information.
This study systematically analyze LLMs' learning preferences for data with conflicting knowledge.
arXiv Detail & Related papers (2024-10-07T06:49:41Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
We propose a simple yet generalisable approach for knowledge infusion by generating prompts from the context in the input text.
Our experiments show the effectiveness of our approach which we evaluate by probing the fine-tuned LLMs.
arXiv Detail & Related papers (2024-03-03T11:19:26Z) - Prompt-Time Symbolic Knowledge Capture with Large Language Models [0.0]
Augmenting large language models (LLMs) with user-specific knowledge is crucial for real-world applications, such as personal AI assistants.
This paper investigates utilizing the existing LLM capabilities to enable prompt-driven knowledge capture.
arXiv Detail & Related papers (2024-02-01T08:15:28Z) - Finetuning an LLM on Contextual Knowledge of Classics for Q&A [0.0]
This project is an attempt to merge the knowledge of Classics with the capabilities of artificial intelligence.
The goal of this project is to develop an LLM that not only reproduces contextual knowledge accurately but also exhibits a consistent "personality"
arXiv Detail & Related papers (2023-12-13T02:32:01Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - KnowledGPT: Enhancing Large Language Models with Retrieval and Storage
Access on Knowledge Bases [55.942342665806656]
KnowledGPT is a comprehensive framework to bridge large language models with various knowledge bases.
The retrieval process employs the program of thought prompting, which generates search language for KBs in code format.
KnowledGPT offers the capability to store knowledge in a personalized KB, catering to individual user demands.
arXiv Detail & Related papers (2023-08-17T13:07:00Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
We introduce Data-driven Instruction Augmentation for Language-conditioned control (DIAL)
We utilize semi-language labels leveraging the semantic understanding of CLIP to propagate knowledge onto large datasets of unlabelled demonstration data.
DIAL enables imitation learning policies to acquire new capabilities and generalize to 60 novel instructions unseen in the original dataset.
arXiv Detail & Related papers (2022-11-21T18:56:00Z) - Knowledgeable Salient Span Mask for Enhancing Language Models as
Knowledge Base [51.55027623439027]
We develop two solutions to help the model learn more knowledge from unstructured text in a fully self-supervised manner.
To our best knowledge, we are the first to explore fully self-supervised learning of knowledge in continual pre-training.
arXiv Detail & Related papers (2022-04-17T12:33:34Z) - Knowledge Based Multilingual Language Model [44.70205282863062]
We present a novel framework to pretrain knowledge based multilingual language models (KMLMs)
We generate a large amount of code-switched synthetic sentences and reasoning-based multilingual training data using the Wikidata knowledge graphs.
Based on the intra- and inter-sentence structures of the generated data, we design pretraining tasks to facilitate knowledge learning.
arXiv Detail & Related papers (2021-11-22T02:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.