Microwave Quantum Illumination with Optical Memory and Single-Mode Phase-Conjugate Receiver
- URL: http://arxiv.org/abs/2405.14118v1
- Date: Thu, 23 May 2024 02:44:19 GMT
- Title: Microwave Quantum Illumination with Optical Memory and Single-Mode Phase-Conjugate Receiver
- Authors: Sangwoo Jeon, Jihwan Kim, Duk Y. Kim, Zaeill Kim, Taek Jeong, Su-Yong Lee,
- Abstract summary: Microwave quantum illumination with entangled pairs of microwave signal and optical idler modes, can achieve the sub-optimal performance.
We first propose a testbed of microwave quantum illumination with an optical memory which is simulated with a delay line in the idler mode.
We propose a single-mode phase conjugate receiver that consists of a low-reflectivity beam splitter, an electro-optomechanical phase conjugator, and a photon number resolving detector.
- Score: 5.7993016886528785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microwave quantum illumination with entangled pairs of microwave signal and optical idler modes, can achieve the sub-optimal performance with joint measurement of the signal and idler modes. Here, we first propose a testbed of microwave quantum illumination with an optical memory which is simulated with a delay line in the idler mode. It provides how much an input two-mode squeezing is necessary to compensate the loss of the optical memory, while maintaining quantum advantage over coherent state. When the memory is lossy, the input two-mode squeezing has to be higher through high cooperativity in the optical mode. Under the testbed, we propose a single-mode phase conjugate receiver that consists of a low-reflectivity beam splitter, an electro-optomechanical phase conjugator, and a photon number resolving detector. The performance of the newly proposed receiver approaches the maximum quantum advantage for local measurement. Furthermore, the quantum advantage is obtained even with an on-off detection while being robust against the loss of the memory.
Related papers
- Sub-microsecond high-fidelity dispersive readout of a spin qubit with
squeezed photons [0.0]
Fast and high-fidelity qubit measurement is essential for realizing quantum error correction.
We show that using displaced squeezed vacuum states for the probing photons can improve the qubit readout fidelity and speed.
arXiv Detail & Related papers (2023-12-17T21:33:54Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Parametric Amplification of an Optomechanical Quantum Interconnect [0.0]
Connecting superconducting qubits to optical fiber necessitates the conversion of microwave photons to optical photons.
Modern experimental demonstrations exhibit strong coupling between a microwave resonator and an optical cavity mediated through phononic modes.
We propose a theoretical framework for time-dependent control of the driving lasers based on the input-output formalism of quantum optics.
arXiv Detail & Related papers (2022-02-24T18:48:58Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Optimal gain sensing of quantum-limited phase-insensitive amplifiers [0.0]
We find the quantum limit on the precision of estimating the gain of a quantum-limited phase-insensitive optical amplifier using a multimode probe.
All pure-state probes whose reduced state on the input modes to the amplifier is diagonal in the multimode number basis are proven to be quantum-optimal.
arXiv Detail & Related papers (2021-12-08T15:16:22Z) - Entanglement Thresholds of Doubly-Parametric Quantum Transducers [0.0]
We study the operating parameters of doubly-parametric quantum transducers.
We find simple, explicit expressions for the necessary and sufficient conditions under which they can entangling frequencies optical and microwave modes.
These differences are important considerations in the construction of larger quantum networks that integrate multiple transducers.
arXiv Detail & Related papers (2021-10-19T20:07:30Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Noise reduction in qubit readout with a two-mode squeezed interferometer [0.0]
We measure a transmon qubit/cavity system with an unbalanced two-mode squeezed light interferometer formed from two JPCs.
We have observed a 31% improvement in power Signal-to-Noise Ratio (SNR) of projective readout compared to that of coherent light readout in the same system.
tuning the interferometer to be as unprojective as possible was associated with an increase in the quantum efficiency of our readout relative to the optimum setting for projective measurement.
arXiv Detail & Related papers (2020-07-30T13:55:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.