Unveiling the Tapestry of Consistency in Large Vision-Language Models
- URL: http://arxiv.org/abs/2405.14156v4
- Date: Sun, 06 Oct 2024 09:51:25 GMT
- Title: Unveiling the Tapestry of Consistency in Large Vision-Language Models
- Authors: Yuan Zhang, Fei Xiao, Tao Huang, Chun-Kai Fan, Hongyuan Dong, Jiawen Li, Jiacong Wang, Kuan Cheng, Shanghang Zhang, Haoyuan Guo,
- Abstract summary: We provide a benchmark ConBench to intuitively analyze how LVLMs perform when the solution space of a prompt revolves around a knowledge point.
Based on the ConBench tool, we are the first to reveal the tapestry and get the following findings.
We hope this paper will accelerate the research community in better evaluating their models and encourage future advancements in the consistency domain.
- Score: 25.106467574467448
- License:
- Abstract: Large vision-language models (LVLMs) have recently achieved rapid progress, exhibiting great perception and reasoning abilities concerning visual information. However, when faced with prompts in different sizes of solution spaces, LVLMs fail to always give consistent answers regarding the same knowledge point. This inconsistency of answers between different solution spaces is prevalent in LVLMs and erodes trust. To this end, we provide a multi-modal benchmark ConBench, to intuitively analyze how LVLMs perform when the solution space of a prompt revolves around a knowledge point. Based on the ConBench tool, we are the first to reveal the tapestry and get the following findings: (1) In the discriminate realm, the larger the solution space of the prompt, the lower the accuracy of the answers. (2) Establish the relationship between the discriminative and generative realms: the accuracy of the discriminative question type exhibits a strong positive correlation with its Consistency with the caption. (3) Compared to open-source models, closed-source models exhibit a pronounced bias advantage in terms of Consistency. Eventually, we ameliorate the consistency of LVLMs by trigger-based diagnostic refinement, indirectly improving the performance of their caption. We hope this paper will accelerate the research community in better evaluating their models and encourage future advancements in the consistency domain. The project is available at https://github.com/foundation-multimodal-models/ConBench.
Related papers
- Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models [33.76903352835436]
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs.
These models are prone to parametric knowledge conflicts, which arise from inconsistencies of represented knowledge between their vision and language components.
We present a systematic approach to detect, interpret, and mitigate them.
arXiv Detail & Related papers (2024-10-04T17:59:28Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Evaluating Fairness in Large Vision-Language Models Across Diverse Demographic Attributes and Prompts [27.66626125248612]
We empirically investigate visual fairness in several mainstream large vision-language models (LVLMs)
Our fairness evaluation framework employs direct and single-choice question prompt on visual question-answering/classification tasks.
We propose a potential multi-modal Chain-of-thought (CoT) based strategy for bias mitigation, applicable to both open-source and closed-source LVLMs.
arXiv Detail & Related papers (2024-06-25T23:11:39Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe pitfall in deep learning models trained on single modality data.
We introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations.
Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases.
arXiv Detail & Related papers (2024-06-24T20:29:16Z) - Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective [9.633811630889237]
We propose a causal framework to interpret the biases in Visual Question Answering (VQA) problems.
We introduce a novel dataset with 12,000 challenging VQA instances requiring multi-hop reasoning.
Our experiments show that MLLMs perform poorly on MORE, indicating strong unimodal biases and limited semantic understanding.
arXiv Detail & Related papers (2024-03-27T08:38:49Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
We study the factuality of large language models (LLMs) in the context of answering questions that test current world knowledge.
We introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types.
We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination.
Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA.
arXiv Detail & Related papers (2023-10-05T00:04:12Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub)
Our LVLM-eHub consists of $8$ representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform.
The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario.
arXiv Detail & Related papers (2023-06-15T16:39:24Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.