Mitigating Object Hallucinations in Large Vision-Language Models via Attention Calibration
- URL: http://arxiv.org/abs/2502.01969v1
- Date: Tue, 04 Feb 2025 03:27:38 GMT
- Title: Mitigating Object Hallucinations in Large Vision-Language Models via Attention Calibration
- Authors: Younan Zhu, Linwei Tao, Minjing Dong, Chang Xu,
- Abstract summary: Large Vision-Language Models (LVLMs) generate responses that are not factually aligned with the visual content.
We introduce a training-free solution, Uniform Attention (UAC), that estimates the bias from single meaningless input image.
We also introduce a fine-tuning solution, Dynamic Attention (DAC), that enforces the consistent outputs wherever the object locates in the image.
- Score: 22.39558434131574
- License:
- Abstract: Large Vision-Language Models (LVLMs) exhibit impressive multimodal reasoning capabilities but remain highly susceptible to object hallucination, where models generate responses that are not factually aligned with the visual content. Recent works attribute this issue to an inherent bias of LVLMs where vision token attention map has a fixed correlation with spatial position, and propose to mitigate this issue by reordering visual tokens. However, we find that different LVLMs exhibit different correlations between attention and spatial position, which makes the existing solution difficult to generalize to other LVLMs. To address this issue, we first introduce a training-free solution, Uniform Attention Calibration (UAC), that estimates the bias from single meaningless input image and applies a calibration matrix to rectify attention imbalances. To further alleviate the bias, we relax the assumption of single meaningless input in UAC and introduce a fine-tuning solution, Dynamic Attention Calibration (DAC), that enforces the consistent outputs wherever the object locates in the image via a plug-and-plays module. Comprehensive experiments across multiple benchmarks demonstrate that UAC and DAC significantly reduce object hallucination while improving general multimodal alignment. Our methods achieve state-of-the-art performance across diverse LVLM architectures on various metrics.
Related papers
- MINT: Mitigating Hallucinations in Large Vision-Language Models via Token Reduction [6.416957959150438]
Hallucinations hinder the application of Large Vision-Language Models (LVLMs) in domains that require high reliability.
We propose MINT, a training-free decoding strategy, MItigating hallucinations via tokeN reducTion.
Our approach achieves a 4% improvement in mitigating hallucinations caused by distracted perception compared to original models.
arXiv Detail & Related papers (2025-02-02T08:34:57Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment [57.0121616203175]
We propose FiSAO, a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment.
By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data.
arXiv Detail & Related papers (2024-10-18T03:34:32Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.
We propose a novel dynamic correction decoding method for MLLMs (DeCo)
We evaluate DeCo on widely-used benchmarks, demonstrating that it can reduce hallucination rates by a large margin compared to baselines.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks [33.476693301050275]
We conduct experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks.
By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers.
arXiv Detail & Related papers (2024-06-04T13:52:54Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.