FloodDamageCast: Building Flood Damage Nowcasting with Machine Learning and Data Augmentation
- URL: http://arxiv.org/abs/2405.14232v2
- Date: Fri, 24 May 2024 09:04:33 GMT
- Title: FloodDamageCast: Building Flood Damage Nowcasting with Machine Learning and Data Augmentation
- Authors: Chia-Fu Liu, Lipai Huang, Kai Yin, Sam Brody, Ali Mostafavi,
- Abstract summary: FloodDamageCast is a machine learning framework tailored for property flood damage nowcasting.
The framework leverages heterogeneous data to predict residential flood damage at a resolution of 500 meters by 500 meters within Harris County, Texas, during the 2017 Hurricane Harvey.
Insights gleaned from flood damage nowcasting can assist emergency responders to more efficiently identify repair needs, allocate resources, and streamline on-the-ground inspections.
- Score: 2.8532862791847053
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Near-real time estimation of damage to buildings and infrastructure, referred to as damage nowcasting in this study, is crucial for empowering emergency responders to make informed decisions regarding evacuation orders and infrastructure repair priorities during disaster response and recovery. Here, we introduce FloodDamageCast, a machine learning framework tailored for property flood damage nowcasting. The framework leverages heterogeneous data to predict residential flood damage at a resolution of 500 meters by 500 meters within Harris County, Texas, during the 2017 Hurricane Harvey. To deal with data imbalance, FloodDamageCast incorporates a generative adversarial networks-based data augmentation coupled with an efficient machine learning model. The results demonstrate the model's ability to identify high-damage spatial areas that would be overlooked by baseline models. Insights gleaned from flood damage nowcasting can assist emergency responders to more efficiently identify repair needs, allocate resources, and streamline on-the-ground inspections, thereby saving both time and effort.
Related papers
- CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
We present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting.
Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data.
arXiv Detail & Related papers (2023-10-23T07:01:09Z) - MaxFloodCast: Ensemble Machine Learning Model for Predicting Peak
Inundation Depth And Decoding Influencing Features [0.8497188292342053]
This study demonstrates a proposed machine learning model, MaxFloodCast, trained on physics-based hydrodynamic simulations in Harris County.
MaxFloodCast offers efficient and interpretable flood inundation depth predictions.
arXiv Detail & Related papers (2023-08-11T16:58:57Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Flood Prediction Using Machine Learning Models [0.0]
This paper aims to reduce the extreme risks of this natural disaster by providing a prediction for floods using different machine learning models.
With the outcome, a comparative analysis will be conducted to understand which model delivers a better accuracy.
arXiv Detail & Related papers (2022-08-02T03:59:43Z) - PreDisM: Pre-Disaster Modelling With CNN Ensembles for At-Risk
Communities [0.32228025627337864]
We introduce PreDisM that employs an ensemble of ResNets and fully connected layers over decision trees to accurately estimate weakness of man-made structures to disaster-occurrences.
Our model performs well and is responsive to tuning across types of disasters and highlights the space of preemptive hazard damage modelling.
arXiv Detail & Related papers (2021-12-26T23:48:23Z) - A Machine learning approach for rapid disaster response based on
multi-modal data. The case of housing & shelter needs [0.0]
One of the most immediate needs of people affected by a disaster is finding shelter.
This paper proposes a machine learning workflow that aims to fuse and rapidly analyse multimodal data.
Based on a database of 19 characteristics for more than 200 disasters worldwide, a fusion approach at the decision level was used.
arXiv Detail & Related papers (2021-07-29T18:22:34Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
We propose a mixed data approach, which leverages publicly available satellite imagery and geolocation features of the affected area to identify damaged buildings after a hurricane.
The method demonstrated significant improvement from performing a similar task using only imagery features, based on a case study of Hurricane Harvey affecting Greater Houston area in 2017.
In this work, a creative choice of the geolocation features was made to provide extra information to the imagery features, but it is up to the users to decide which other features can be included to model the physical behavior of the events, depending on their domain knowledge and the type of disaster.
arXiv Detail & Related papers (2020-12-15T21:30:19Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.